Chemical Science
Edge Article
S. Ma, Chem. Rev., 2005, 105, 2829; (d) N. Krause,
Cumulenes and Allenes, Science of Synthesis, Thieme,
Stuttgart, Germany, 2007, vol. 44; (e) N. Krause and
C. Winter, Chem. Rev., 2011, 111, 1994; (f) S. Yu and S. Ma,
Angew. Chem., Int. Ed., 2012, 51, 3074; (g) B. Alcaide and
P. Almendros, Chem. Soc. Rev., 2014, 43, 2886; (h) W. Yang
and A. S. K. Hashmi, Chem. Soc. Rev., 2014, 43, 2941.
2 (a) R. E. Benson and R. V. Lindsey Jr., J. Am. Chem. Soc., 1959,
81, 4247; (b) R. J. De Pasquale, J. Organomet. Chem., 1971, 32,
381; (c) J. Furukawa, J. Kiji and K. Ueo, Makromol. Chem.,
1973, 170, 247.
3 (a) D. J. Pasto, N.-Z. Huang and C. W. Eigenbrot, J. Am. Chem.
Scheme 5 Acid catalyzed isomerization reactions of allene-cyclo-
´
´
Soc., 1985, 107, 3160; (b) C. Hernandez-Dıaz, E. Rubio and
trimers to mesitylene derivatives.
´
J. Gonzalez, Eur. J. Org. Chem., 2016, 265.
4 (a) B. M. Mikhailov, V. N. Smirnov, O. D. Smirnova,
E. P. Prokofev and A. S. Shashkov, Izv. Akad. Nauk SSSR,
Ser. Khim., 1979, 2340; (b) M. E. Gurskii, S. V. Baranin,
A. S. Shashkov, A. I. Lutsenko and B. M. Mikhailov, J.
Organomet. Chem., 1983, 246, 129; (c) Y. N. Bubnov,
M. E. Gurskii, S. Y. Erdyakov, O. A. Kizas,
G. D. Kolomnikova, N. Y. Kuznetsov, T. V. Potapova,
O. A. Varzatskii and Y. Z. Voloshin, J. Organomet. Chem.,
2009, 694, 1754.
5 X. Tao, G. Kehr, C. G. Daniliuc and G. Erker, Angew. Chem.,
Int. Ed., 2017, 56, 1376.
6 A. Ueno, J. Li, C. G. Daniliuc, G. Kehr and G. Erker, Chem.–
Eur. J., 2018, 24, 10044.
7 (a) M. F. Lappert and B. Prokai, J. Organomet. Chem., 1964, 1,
384; (b) S. Hara, H. Dojo, S. Takinami and A. Suzuki,
Tetrahedron Lett., 1983, 24, 731; (c) Y. Satoh, H. Serizawa,
S. Hara and A. Suzuki, J. Am. Chem. Soc., 1985, 107, 5225;
(d) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
(e) N. Matsumi and Y. Chujo, Polym. Bull., 1997, 39, 2952;
(f) C. Wang, T. Tobrman, Z. Xu and E. Negishi, Org. Lett.,
2009, 6, 4092; (g) A. Suzuki, Heterocycles, 2010, 80, 15; (h)
J. R. Lawson, E. R. Clark, I. A. Cade, S. A. Solomon and
M. J. Ingleson, Angew. Chem., Int. Ed., 2013, 52, 7518; (i)
J. R. Lawson and R. L. Melen, Inorg. Chem., 2017, 56, 8627.
8 (a) B. M. Mikhailov and Y. N. Bubnov, Izv. Akad. Nauk SSSR,
Ser. Khim., 1964, 1874; (b) B. M. Mikhailov and Y. N. Bubnov
Organoboron Compounds in Organic Synthesis, Harvood,
Chur, 1984; (c) Y. N. Bubnov, Pure Appl. Chem., 1987, 59,
895; (d) R. W. Hoffmann, Pure Appl. Chem., 1988, 60, 123;
(e) Y. Yamamoto and N. Asao, Chem. Rev., 1993, 93, 2207.
We have started to use the allene cyclotrimerization products
1 and 14 as the starting materials for the conversion to the
respective arene isomers. It is known that 1,3,5-trimethylene-
cyclohexane is resistant to thermal isomerization, but it was
reported that it could be isomerized by treatment with acid.2a,13
We repeated this reaction: treatment of 1 with 5 mol% of
p-toluene sulfonic acid in toluene solution at r.t. for 1.5 h
cleanly converted 1 to mesitylene (Scheme 5). We also treated
the n-octyl- and cyclohexylallene cyclotrimers 14c14 and 14e5
with p-toluene sulfonic acid. Compound 14c was fully converted
on a preparative scale with 10 mol% of the acid catalyst during
48 h at r.t. The hexa-substituted arene 15c was isolated as an oil
1
in 78% aer workup. It was characterized by H and 13C NMR
spectroscopy (see the ESI† for details). Compound 14e needed
slightly more vigorous conditions. It required treatment with
10 mol% of the p-toluene sulfonic acid catalyst at 80 ꢀC for 5 h to
become converted. This reaction is not overly selective, but we
isolated the aromatic isomer 15e in 37% yield from the reaction
mixture. The compound was characterized by spectroscopy and
by an X-ray crystal structure analysis (see the ESI† for details). In
principle, these reactions have shown that the metal-free X–
B(C6F5)2 catalyzed allene cyclotrimerization opens attractive
pathways to the synthesis of interesting highly substituted
arene products.
Conflicts of interest
There are no conicts to declare.
¨
9 (a) J. Kruger and R. W. Hoffmann, J. Am. Chem. Soc., 1997,
119, 7499; (b) Y. Yamamoto, K. Kurihara, A. Yamada,
M. Takahashi, Y. Takahashi and N. Miyaura, Tetrahedron,
Acknowledgements
Financial support for the European Research Council is grate-
fully acknowledged. We thank Dr Atsushi Ueno and Jennifer
¨
2003, 59, 537; (c) N. G. Bandur, D. Bruckner,
R. W. Hoffmann and U. Koert, Org. Lett., 2006, 8, 3829.
10 (a) D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010,
49, 46; (b) D. W. Stephan and G. Erker, Angew. Chem., Int. Ed.,
2015, 54, 6400.
¨
Moricke for providing us with samples of the halogenoboranes
2a,b.
11 (a) J. S. J. McCahill, G. C. Welch and D. W. Stephan, Angew.
Chem., Int. Ed., 2007, 46, 4968; (b) J. B. Sortais, T. Voss,
Notes and references
¨
G. Kehr, R. Frohlich and G. Erker, Chem. Commun., 2009,
1 (a) A. S. K. Hashmi, Angew. Chem., Int. Ed. Engl., 2000, 39,
3590; (b) N. Krause and A. S. K. Hashmi, Modern Allene
Chemistry, Wiley-VCH, Weinheim, Germany, 2004; (c)
¨
7417; (c) T. Voss, J.-B. Sortais, R. Frohlich, G. Kehr and
G. Erker, Organometallics, 2011, 30, 584; (d) X. X. Zhao and
Chem. Sci.
This journal is © The Royal Society of Chemistry 2019