10.1002/anie.202009657
Angewandte Chemie International Edition
COMMUNICATION
probed for activity when using tert-butylhydroperoxide—as flavin
C-4a hydroperoxide mimic—in combination with lithium bromide
under otherwise identical catalytic conditions (see supporting
information). Indeed, flavin 7 showed significant catalytic activity.
In a second approach, we used N-bromosuccinimide as Br+-
source and again found rate enhancement when using flavin 7 as
catalyst (see supporting information). Both experiments point
towards active catalytic participation of the 2-aminobenzothiazole
group in bromination catalysis.
present study is, therefore, anticipated to serve as critical starting
point for site-selective flavin catalysis.
Acknowledgements
The Chemical Industry Funds (PhD Fellowship to A.W and Liebig
Fellowship to G.S) is gratefully acknowledged. Our group is
supported by the Technical University of Munich through the
Junior Fellow Programme. G.S. is very grateful to Prof. T. Bach
for his continuous support. We thank Dr. A. Bauer for assistance
with UV/Vis spectroscopy and O. Ackermann for HPLC analyses.
Having observed bromination over unselective substrate
decomposition, we expanded our catalysis studies to different
kinds of oxidation-prone, phenolic substrates (Figure 6). Other
N-terminal tyrosine protecting groups such as Cbz (13) and Fmoc
(14) are tolerated, which highlights the compatibility with
oxidation-prone benzylic positions. Dipeptides like Boc-Tyr-Val-
OMe 15 are suitable substrates as well. Additionally, a variety of
flavones, umbelliferon, and flavanones resulted in efficient,
regioselective mono-bromination (16–19). Throughout all
examples, (–)-riboflavin tetraacetate led to decomposition
independent of the chosen reaction time (see supporting
information).
Keywords: Flavin catalysis • Biomimetic halogenation •
Reversible Redox interconversion • Non-covalent interactions •
Photoredox catalysis
[1]
[2]
[3]
a) T. C. Bruice, Acc. Chem. Res. 1980, 13, 256–262; b) R. B. Silverman,
Acc. Chem. Res. 1995, 28, 335–342; c) S. O. Mansoorabadi, C. J.
Thibodeaux, H.-w. Liu, J. Org. Chem. 2007, 72, 6329–6342; d) C. T.
Walsh, T. A. Wencewicz, Nat. Prod. Rep. 2013, 30, 175–200.
a) E. Romero, J. R. Gómez Castellanos, G. Gadda, M. W. Fraaije, A.
Mattevi, Chem. Rev. 2018, 118, 1742–1769; b) M. Ismail, L. Schroeder,
M. Frese, T. Kottke, F. Hollmann, C. E. Paul, N. Sewald, ACS Catal. 2019,
9, 1389−1395.
a) C. Kemal, T. C. Bruice, Proc. Nat. Acad. Sci. USA 1976, 73, 995–999;
b) T. C. Bruice, J. B. Noar, S. S. Ball, U. V. Venkataram, J. Am. Chem.
Soc. 1983, 105, 2452–2463; c) F. G. Gelalcha, Chem. Rev. 2007, 107,
3338–3361; d) J. Sucharitakul, M. Prongjit, D. Haltrich, P. Chaiyen,
Biochemistry 2008, 47, 8485–8490; e) J. Zelenka, R. Cibulka, J.
Roithová, Angew. Chem. Int. Ed. 2019, 58,15412–15420, Angew. Chem.
2019, 131, 15558–15566.
[4]
[5]
A. Kantz, G. T. Gassner, Biochemistry 2011, 50, 523–532.
a) B. P. Branchaud, C. T. Walsh, J. Am. Chem. Soc. 1985, 107, 2153–
2161; b) Y. Liang, J. Wei, X. Qiu, N. Jiao, Chem. Rev. 2018, 118, 4912–
4945.
[6]
[7]
V. F. Batista, J. L. Galman, D. C. G. A. Pinto, A. M. S. Silva, N. J. Turner,
ACS Catal. 2018, 8, 11889−11907.
a) H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165–4222;
b) C. Morrill, C. Jensen, X. Just-Baringo, G. Grogan, N. J. Turner, D. J.
Procter, Angew. Chem. Int. Ed. 2018, 57, 3692–3696; Angew. Chem.
2018, 130, 3754–3758; c) M. J. L. J. Fürst, A. Gran-Scheuch, F. S.
Aalbers, M. W. Fraaije, ACS Catal. 2019, 9, 11207–11241.
Figure 6. Application of bisflavin 6 in aerobic halogenation of oxidation-prone
substrates. Yields were determined by NMR spectroscopy versus internal
standard. See Figure 5 for reaction conditions, with 12 equiv. ‘LutOx’ used for
19 and 15 equiv. ‘LutOx’ for 16–18. [a]: A yield of ≤5% was observed. [b]:
Additionally, 29% (with 6) and 21% (with RFTA) of dibromination observed. PG:
Protecting group.
[8]
[9]
a) C. Dong, S. Flecks, S. Unversucht, C. Haupt, K.-H. van Pée, J. H.
Naismith, Science 2005, 309, 2216–2219; b) E. Yeh, L. C. Blasiak, A.
Koglin, C. L. Drennan, C. T. Walsh, Biochemistry 2007, 46, 1284–1292;
c) S. Flecks, E. P. Patallo, X. Zhu, A. J. Ernyei, G. Seifert, A. Schneider,
C. Dong, J. H. Naismith, K.-H. van Pée, Angew. Chem. Int. Ed. 2008, 47,
9533–9536; Angew. Chem. 2008, 120, 9676–9679.
In summary, we report the design and characterization of a series
of C-6 aminoflavin catalysts and their reactivity under aerobic
conditions. We identified 2,6-lutidinium oxalate as organic soluble,
inexpensive, and traceless reductant for photoexcited flavins.
Applying this reduction strategy, we observed selective
a) W. S. Glenn, E. Nims, S. E. O’Connor, J. Am. Chem. Soc. 2011, 133,
19346–19349; b) K. Yamanaka, K. S. Ryan, T. A. M. Gulder, C. C.
Hughes, B. S. Moore, J. Am. Chem. Soc. 2012, 134, 12434–12437; c) M.
Frese, N. Sewald, Angew. Chem. Int. Ed. 2015, 54, 298–301; Angew.
Chem. 2015, 127, 302–305; d) C. Schnepel, N. Sewald, Chem. Eur. J.
2017, 23, 12064–12086; e) J. Latham, E. Brandenburger, S. A. Shepherd,
B. R. K. Menon, J. Micklefield, Chem. Rev. 2018, 118, 232–269; f) J. T.
Payne, P. H. Butkovich, Y. Gu, K. N. Kunze, H. J. Park, D.-S. Wang, J.
C. Lewis, J. Am. Chem. Soc. 2018, 140, 546–549; g) J. Dong, E.
Fernández-Fueyo, F. Hollmann, C. E. Paul, M. Pesic, S. Schmidt, Y.
Wang, S. Younes, W. Zhang, Angew. Chem. Int. Ed. 2018, 57, 9238–
9261, Angew. Chem. 2018, 130, 9380–9404, h) B. F. Fisher, H. M.
Snodgrass, K. A. Jones, M. C. Andorfer, J. C. Lewis, ACS Cent. Sci.
2019, 5, 1844−1856.
transformations
of
thiourea
flavins,
resulting
in
2-aminobenzothiazole functionalities. Under aerobic conditions,
stacked bisflavins were found to be very stable catalysts, which
slowly release oxidants upon activation of O2. Building on these
studies, we developed a flavin-mediated halogenation strategy for
oxidation-prone substrates including phenolic compounds,
flavones, and flavanones. One key advantage when compared to
parent (–)-riboflavin is the significantly suppressed substrate
decomposition. Mechanistic studies additionally revealed catalytic
participation of the 2-aminobenzothiazole modification. The
4
This article is protected by copyright. All rights reserved.