10.1002/anie.202014518
Angewandte Chemie International Edition
COMMUNICATION
S
N
Chen, J. Chen, W. Zhang, Org. Biomol. Chem. 2018, 16, 5618; e) B. N.
Hemric, A. W. Chen, Q. Wang, ACS Catal. 2019, 9, 10070.
D.-F. Lu, C.-L. Zhu, J. D. Sears, H. Xu, J. Am. Chem. Soc. 2016, 138,
11360.
Y. Liu, Y. Xie, H. Wang, H. Huang, J. Am. Chem. Soc. 2016, 138, 4314.
1,4-Aminoalkylation/arylation, see: a) H. Bao, L. Bayeh, U. K. Tambar,
Chem. Sci. 2014, 5, 4863; b) H.-M. Huang, M. Koy, E. Serrano, P. M.
Pflüger, J. L. Schwarz, F. Glorius, Nat. Catal. 2020, 3, 393.
a) D. Xing, D. Yang, Org. Lett. 2013, 15, 4370; b) K. P. S. Cheung, D.
Kurandina, T. Yata, V. Gevorgyan, J. Am. Chem. Soc. 2020, 142, 9932.
NCS R
HN
TFA, DCM
a
b
N
[6]
R
Ph
Boc
Ph
22 °C
9 R = Me, 90%
10 R = H, 88%
3w R = Me
3x R = H
[7]
[8]
R2
N
2
NH2
NCS
R
N
4-methylbenzene-1,2-dithiol
R1
R1
Ph
Ph
MeOH-CH2Cl2 (v/v = 3:1)
for 3a, 22 °C
MeOH for 3x, 22 °C
[9]
3a R1 = Ts, R2 = Me
3x R1 = Boc, R2 = H
11 R1 = Ts, R2 = Me, 76%
12 R1 = Boc, R2 = H, 83%
[10] For selected examples of C-C bond forming processes, see: a) L. Liao,
R. Jana, K. B. Urkalan, M. S. Sigman, J. Am. Chem. Soc. 2011, 133,
5784; b) X. Wu, H.-C. Lin, M.-L. Li, L.-L. Li, Z.-Y. Han, L.-Z. Gong, J. Am.
Chem. Soc. 2015, 137, 13476; c) Y. Xiong, G. Zhang, J. Am. Chem.
Soc. 2018, 140, 2735.
Scheme 5. Post-transformations: Selective transformations of isothiocyanate.
[11] For examples of diamination of alkenes to differently functionalized
diamines, see: a) D. E. Olson, J. Y. Su, D. A. Roberts, J. Du Bois, J. Am.
Chem. Soc. 2014, 136, 13506; b) Z. M. Khoder, C. E. Wong, S. R.
Chemler, ACS Catal. 2017, 7, 4775; c) S. Lee, Y. J. Jang, E. T. Phipps,
H. Lei, T. Rovis, Synthesis 2020, 52, 1247; d) S. Govaerts, L. Angelini,
C. Hampton, L. Malet-Sanz, A. Ruffoni, D. Leonori, Angew. Chem. Int.
Ed. 2020, 59, 15021; Angew. Chem. 2020, 132, 15131.
[12] Selected bioactive compounds containing NCS moiety, see: a) D. Li, Y.
Shu, P. Li, W. Zhang, H. Ni, Y. Cao, Med. Chem. Res. 2013, 22, 3119;
b) S. Giacoppo, M. Galuppo, G. R. De Nicola, R. Lori, P. Bramanti, E.
Mazzon, Bioorg. Med. Chem. 2015, 23, 80; c) A. P. Lawson, M. J. C.
Long, R. T. Coffey, Y. Qian, E. Weerapana, F. E. Oualid, L. Hedstrom,
Cancer Res. 2015, 75, 5130; d) L. Romeo, R. Lori, P. Rollin, P.
Bramanti, E. Mazzon, Molecules 2018, 23, 624.
[13] Selected bioactive compounds containing SCN moiety, see: a) E.
Elhalem, B. N. Bailey, R. Docampo, I. Ujváry, S. H. Szajnman, J. B.
Rodriguez, J. Med. Chem. 2002, 45, 3984; b) S. Dutta, H. Abe, S.
Aoyagi, C. Kibayashi, K. S. Gates, J. Am. Chem. Soc. 2005, 127,
15004; c) M. P. Fortes, P. B. N. da Silva, T. G. da Silva, T. S. Kaufman,
G. C. G. Militão, C. C. Silveira, Eur. J. Med. Chem. 2016, 118, 21.
[14] For a review on isothiocyanates, see: A. K. Mukerjee, R. Ashare, Chem.
Rev. 1991, 91, 1.
In conclusion, we have developed a novel three-component
reaction of TMSNCS, aminopyridinium salts with 1,3-dienes to
access 1,2-aminoisothiocyanation products in a highly chemo-,
and regio-selective manner. The isothiocyanate group can be
converted to the amino group under mild conditions. To the best
of knowledge, this represents the first examples of selective 1,2-
diamination of 1,3-dienes with two easily manipulable and
orthogonally protected amino functions being introduced. A
facile isomerization of allyl thiocyanates to allyl isothiocyanates
under mild photoredox catalytic conditions uncovered during this
study is expected to find applications in the synthesis of allyl
isothiocyanates in a broad sense.
Acknowledgements ((optional))
We thank EPFL (Switzerland), Swiss National Science
Foundation (SNSF 200021-178846/1) for financial supports.
W.G. thanks China Scholarship Council for visiting scholar
fellowship.
[15] For a review on thiocyanates, see: T. Castanheiro, J. Suffert, M.
Donnard, M. Gulea, Chem. Soc. Rev. 2016, 45, 494.
[16] a) A. De Mico, R. Margarita, A. Mariani, G. Piancatelli, Tetrahedron Lett.
1996, 37, 1889; b) M. Bruno, R. Margarita, L. Parlanti, G. Piancatelli, M.
Trifoni, Tetrahedron Lett. 1998, 39, 3847; c) V. Nair, L. G. Nair,
Tetrahedron Lett. 1998, 39, 4585.
Conflict of Interest
[17] Z. Liang, F. Wang, P. Chen, G. Liu, Org. Lett. 2015, 17, 2438.
[18] D. Zhang, H. Wang, C. Bolm, Chem. Commun. 2018, 54, 5772.
[19] Z.-K. Tao, C.-K. Li, P.-Z. Zhang, A. Shoberu, J.-P. Zou, W. Zhang, J.
Org. Chem. 2018, 83, 2418.
The authors declare no conflict of interest.
[20] H. Tian, J. Yu, H. Yang, C. Zhu, H. Fu, Adv. Synth. Catal. 2016, 358,
1794.
Keywords: Alkene difunctionalization • 1,3-diene • amino
isothiocyanation • photoredox catalysis • amidyl radical
[21] a) T. M. Ha, W. Guo, Q. Wang, J. Zhu, Adv. Synth. Catal. 2020, 362,
2205; b) B. Budai, A. Leclair, Q. Wang, J. Zhu, Angew. Chem. Int. Ed.
2019, 58, 10305; Angew. Chem. 2019, 131, 10411; c) X. Bao, T. Yokoe,
T. M. Ha, Q. Wang, J. Zhu, Nat. Commun. 2018, 9, 3725; d) A. Bunescu,
T. M. Ha, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017, 56, 10555;
Angew. Chem. 2017, 129, 10691.
[22] a) Z. Li, R. O. Torres-Ochoa, Q. Wang, J. Zhu, Nat. Commun. 2020, 11,
403; b) X. Bao, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2019, 58,
2139; Angew. Chem. 2019, 131, 2161; c) X. Bao, Q. Wang, J. Zhu,
Chem. Eur. J. 2019, 25, 11630; d) R. O. Torres-Ochoa, A. Leclair, Q.
Wang, J. Zhu, Chem. Eur. J. 2019, 25, 9477; e) X. Bao, Q. Wang, J.
Zhu, Nat. Commun. 2019, 10, 769; f) Z. Li, Q. Wang, J. Zhu, Angew.
Chem. Int. Ed. 2018, 57, 13288; Angew. Chem. 2018, 130, 13472.
[23] For recent reviews on pyridinium salts, see: a) S. L. Rössler, B. J. Jelier,
E. Magnier, G. Dagousset, E. M. Carreira, A. Togni, Angew. Chem. Int.
Ed. 2020, 59, 9264; Angew. Chem. 2020, 132, 9350; b) F.-S. He, S. Ye,
J. Wu, ACS Catal. 2019, 9, 8943.
[24] For selected examples on N-aminopyridinium salts, see: a) T. W.
Greulich, C. G. Daniliuc, A. Studer, Org. Lett. 2015, 17, 254; b) K.
Miyazawa, T. Koike, M. Akita, Chem. Eur. J. 2015, 21, 11677; c) J.-N.
Mo, W.-L. Yu, J.-Q. Chen, X.-Q. Hu, P.-F. Xu, Org. Lett. 2018, 20, 4471;
d) W.-L. Yu, J.-Q. Chen, Y.-L. Wei, Z.-Y. Wang, P.-F. Xu, Chem.
Commun. 2018, 54, 1948; e) Y. Moon, B. Park, I. Kim, G. Kang, S.
Shin, D. Kang, M.-H. Baik, S. Hong, Nat. Commun. 2019, 10, 4117; f) Y.
Moon, W. Lee, S. Hong, J. Am. Chem. Soc. 2020, 142, 12420.
[1]
[2]
[3]
a) J. E. Bäckvall, Acc. Chem. Res. 1983, 16, 335; b) H. Y. Cho, J. P.
Morken, Chem. Soc. Rev. 2014, 43, 4368; c) Y. Zhu, G. G. Cornwall, H.
Du, B. Zhao, Y. Shi, Acc. Chem. Res. 2014, 47, 3665; d) Z. Wu, W.
Zhang, Chin. J. Org. Chem. 2017, 37, 2250; e) Y. Xiong, Y. Sun, G.
Zhang, Tetrahedron Lett. 2018, 59, 347; f) X. Wu, L.-Z. Gong, Synthesis
2019, 51, 122.
Selected examples of 1,2-diamination: a) G. L. J. Bar, G. C. Lloyd-
Jones, K. I. Booker-Milburn, J. Am. Chem. Soc. 2005, 127, 7308; b) H.
Du, B. Zhao, Y. Shi, J. Am. Chem. Soc. 2007, 129, 762; c) B. Zhao, X.
Peng, S. Cui, Y. Shi, J. Am. Chem. Soc. 2010, 132, 11009; d) A.
Lishchynskyi, K. Muñiz, Chem. Eur. J. 2012, 18, 2212; e) Z. Wu, K. Wen,
J. Zhang, W. Zhang, Org. Lett. 2017, 19, 2813.
1,4-Diamination, see: a) B. Akermark, J.-E. Bäckvall, K. Löwenborg, K.
Zetterberg, J. Organomet. Chem. 1979, 166, C33; b) C. Martínez, L.
Martínez, J. Kirsch, E. C. Escudero-Adán, E. Martin, K. Muñiz, Eur. J.
Org. Chem. 2014, 2017.
[4]
[5]
C. E. Sleet, U. K. Tambar, Angew. Chem. Int. Ed. 2017, 56, 5536.
Angew. Chem. 2017, 129, 5628.
1,2-Selective, see: a) D. J. Michaelis, M. A. Ischay, T. P. Yoon, J. Am.
Chem. Soc. 2008, 130, 6610; b) H.-C. Shen, Y.-F. Wu, Y. Zhang, L.-F.
Fan, Z.-Y. Han, L.-Z. Gong, Angew. Chem. Int. Ed. 2018, 57, 2372;
Angew. Chem. 2018, 130, 2396; c) K. Wen, Z. Wu, B. Huang, Z. Ling, I.
D. Gridnev, W. Zhang, Org. Lett. 2018, 20, 1608; d) K. Wen, Z. Wu, B.
4
This article is protected by copyright. All rights reserved.