5
NH2
NH2
NH2
Cl
N
H
N
H
N
H
4a
4b
, 91%
4c
, 90%
, 94%
NH2
NH2
Cl
Cl
NH2
OCH3
Br
N
H
N
N
H
H
4d
, 86%
4f
, 87%
4e
, 91%
NH2
N
NH2
NH2
OH
N
H
N
H
4g
4h
4k
4i
, 74%
, 55%
NH2
, 56%
H
N
N
N
H2N
Cl
4j
, Trace
, Trace
a Reaction conditions: 1 (11 mmol), 2 (16 mmol), Et3N (5.5 mmol), solvent-free, 140 ℃, 9 h; 3a-k (10 mmol), TDO (50 mmol), NaOH (100 mmol), EtOH-H2O (20
mL,v/v, 1/3), 50 ℃. Yields refer to isolated pure products.
Conclusion
An effective system for the preparation of N-substituted-benzene-1,2-diamine derivatives with green reduction agent TDO in the
presence of NaOH was established. In particular, A new effective and useful synthetic reaction of N-(4-chlorophenyl)-2-nitroaniline
with TDO was carried out to give N-(4-chlorophenyl) benzene-1,2-diamine in yield of 94% in this study. Compared with earlier
methods, this procedure has several advantages including simplicity in experiments and work-up and no generated toxic commercial
wastes. Furthermore, This approach only needed simple filtration to give the corresponding diamines due to the poor solubility of the
products. There was no doubt that all these advantages were effective improvements to the existing methods for the synthesis of N-
substituted-benzene-1,2-diamine derivatives. And further research is also needed for the reduction reactions of various types of
nitrobenzene.
The reagent TDO was used as reducing agent for the first time in the synthesis of N-(4-chlorophenyl)benzene-1,2-diamine.
Compared with the reducing agents reported in the literature, TDO had the advantages of good stability, low environmental pollution
and inexpensive. It would provide a new approach of CFZ’s production in laboratory and industry.
Acknowledgement
We are grateful to the North University of China Analyticaland Testing Center for the NMR characterisation.
References and notes
1. World Health Organization. WHO model list of essential medicines: 20th list, March 2017, 2017.
2. World Health Organization. Global tuberculosis report 2018. Geneva, Switzerland, 2018.
3. Bannigan, P.; Durack, E.; Madden, C.; Lusi, M.; Hudson, S. P. Acs Omega. 2017, 2, 8969–8981.
4. (a) Taylor, A. M.; Vaswani, R. G.; Gehling, V. S.; Hewitt, M. C.; Leblanc, Y.; Audia, J. E.; Bellon, S.; Cummings, R. T.; Côté, A.; Harmange, J. C.
ACS. Med. Chem Lett. 2015, 7, 145–150; (b) Wang, H.; Gao, X.; Zhang, X.; Jin, H.; Tao, K.; Hou, T. Bioorg. Med. Chem. Lett. 2017, 27, 90–93.
5. (a) Liu, B.; Liu, K.; Lu, Y.; Zhang, D.; Yang, T.; Li, X.; Ma, C.; Zheng, M.; Wang, B.; Zhang, G. Molecules. 2012, 17, 4545–4559; (b) Zhang, D.; Lu,
Y.; Liu, K.; Liu, B.; Wang, J.; Zhang, G.; Zhang, H.; Liu, Y.; Wang, B.; Zheng, M. J. Med. Chem. 2012, 55, 8409–8417.
6. Kamal, A.; Babu, A. H.; Ramana, A. V.; Sinha, R.; Yadav, J. S.; Arora, S. K. Bioorg. Med. Chem. Lett. 2005, 15, 1923–1926.
7. (a) Mcgill, J. E.; Lindstrom, F. Anal. Chem. 1977, 49, 26–29; (b) Mot, A.; Zoltan, K.; Svistunenko, D. A.; Damian, G.; Silaghi-Dumitrescu, R.;
Makarov, S. V. Dalton. Trans. 2010, 39, 1464–1466; (c) Salnikov, D. S.; Dereven’kov, I. A.; Makarov, S. V.; Ageeva, E. S.; Lupan, A,; Surducan,
M.; Silaghi-Dumitrescu, R. Rev. Roum. Chim. 2012, 57, 353–359.
8. Nakagawa, K.; Minami, K. Tetrahedron Lett. 1972, 13, 343–346.
9. Dhillon, R. S. Asian. J. Res. Chem. 2013, 6, VIII.
10. (a) Radu, S. Sodium dithionite, rongalite and thiourea oxides: chemistry and application, World Scientific, 2016; (b) Koniecki, W. B; Linch, A. L.
Anal. Chem. 1958, 30, 1134–1137; (c) Huang, S. L.; Chen, T. Y. J. Chin. Chem. Soc. 1975. 22. 91–94; (d) Nakagawa, K.; Mineo, S.; Kawamura, S.;
Minami, K. Yakugaku Zasshi. 1977, 97, 1253–1256.
11. Chua, C. K.; Ambrosi, A.; Pumera, M. J. Mater. Chem. 2012, 22, 11054–11061.
12. Poor yields were observed for the reaction of 4-fluoro-1-nitrobenzene, 1-Fluoro-3-nitrobenzene with 4-chloroaniline, aniline to form N-(4-
chlorophenyl)-3-nitroaniline, 3-nitro-N-phenylaniline and N-(4-chlorophenyl)-4-nitroaniline (3k).