1470 J . Org. Chem., Vol. 67, No. 5, 2002
Sanz et al.
(N1), -177.4 (N1′), -99.7 (N9). Elemental analysis calcd for
)164.1, 3J C-N ) 4.4), 132.1 (C4, 1J )166.5, 3J C-N ) 3.0), 130.0
1
3
1
C
17H15N3: C 78.13, H 5.79, N 16.08; found: C 77.90, H 5.86,
(Cm, J ) 161.0, J ) 8.0), 124.8 (Cp, J ) 160.6), 122.2 (C7,
3
N 15.92. The corresponding N-deuterated derivative has the
following NMR characteristics: 2H NMR (CDCl3 + D2O): δ )
13.15 (D10).
2J C-N ) 5.0, J C-N ) 8.2), 121.5 (C5, 1J ) 167.5, 2J ) 2J )
4.0), 117.2 (Co, 1J ) 158.1), 116.6 (C3), 115.3 (C2′/C5′, 1J )
186.3, 2J ) 3J ) 7.7, 3J ) 5.0, 1J C-N ) 14.7, 2J C-N ) 1.9), 108.0
1
2
2
2
[
15N4]-N-{[5-[(P yr r ol-1-yla m in o)m et h ylen e]-1,3-cyclo-
(C3′/C4′, J ) 172.4, J ) 3J ) 7.6, J ) 3.4, J C-N ) 5.6); 15
N
2h
p en ta d ien -1-yl]m eth ylen e}p yr r ole-1-a m in e (4-15N4) a n d
15N2]-N-{[5-[(Dim eth yla m in e)m eth ylen e]-1,3-cyclop en ta -
NMR (CDCl3) δ -240.7 (N1,
J
) 9.0), -177.4 (N1′,
N1-H10‚‚‚N9
[
1J N9-N1′ ) 10.3), -99.7 (N9). The corresponding N-deuterated
d ien -1-yl]m eth ylen e}p yr r ole-1-a m in e (15-15N2). A solution
of 11 (0.26 g, 0.84 mmol) in EtOH (6.50 mL) was refluxed with
[15N2]-aminopyrrole (0.14 g, 1.68 mmol) for 3 h 30 min. The
solvent was evaporated, and the crude was purified by column
chromatography (1:10 CHCl3-hexane) to afford (4-15N4) and a
mixture of 15-15N2 and [15N2]-aminopyrrole; this mixture was
chromatographed over aluminum oxide (1:10 AcOEt-hexane)
to afford pure 15-15N2; yield 0.098 g, 54%.
derivative has the following NMR characteristics: 1H NMR
2
3
(CDCl3 + D2O): δ ) 8.53 (dd, H8, J H8-N9 ) 2.8, J H8-N1′
)
6.9), 7.95 (s, H2), 7.41 (m, Hm), 7.24 (m, Ho), 7.18 (m, Hp),
7.13 (m, H2′/H5′, 2J H-N ) 0.9, 3J H-N ) 2.5), 7.09 (m, H6), 6.90
4
3
3
(dd, H4, J H4-H6 ) 1.9), 6.47 (dd, H5, J H5-H6 ) 3.0, J H5-H4
)
4.4), 6.31 (m, H3′/H4′, J H-N ) 6.1); 13C NMR (CDCl3 + D2O):
3
3
1
1
δ ) 149.5 (C8, J C-H ) 1.5, J C-N ) 6.2), 142.4 (C2, J C-N
)
1
3
15.7), 139.6 (Ci, J C-N ) 15.4), 137.6 (C6, J C-N ) 4.7), 132.1
3
3
(15-15N2): 1H NMR (CDCl3) δ 8.93 (br s, H2), 8.53 (dd, H8,
(C4, J C-N ) 2.9), 129.8 (Cm, J C-N ) 1.9), 124.7 (Cp), 122.2
2 3 2
3
2
2J H8-N9 ) 2.6, J H8-N1′ ) 7.7), 7.12 (m, H2′/H5′, J H2′/H5′-N1′
)
)
(C7, J C-N ) 4.9, J C-N ) 8.4), 121.4 (C5), 117.0 (Co, J C-N )
0.9, J
) 2.4), 6.89 (dd, H4), 6.77 (dd, H6, J H6-H4
1.7), 116.5 (C3, 2J C-N ) 1.6), 115.2 (C2′/C5′, 1J C-N ) 14.9, 2J C-N
3
4
H2′/H5′-N9
2
1.6), 6.53 (ddd, H5, 3J H5-H6 ) 3.0, 3J H5-H4 ) 4.7, 5J H5-H2 ) 0.9),
6.26 (m, H3′/H4′, 3J H3′/H4′-N1′ ) 5.9), 3.39 (s, CH3), 3.33 (s, CH3);
) 1.8), 107.9 (C3′/C4′, J C-N ) 5.6); 15N NMR (CDCl3 + D2O):
1
2d
δ ) -242.1 (N1, J N1-D ) 13.3,
J
) 8.7), -177.3
N1-D‚‚‚N9
13C NMR (CDCl3) δ 152.4 (C2, J ) 168.9, J C-N ) 3.9), 149.4
(N1′,1J N1′-N9 ) 10.3), -99.2 (N9).
1
4
1
3
1
1
(C8, J ) 156.0, J ) 3.3, J C-N ) 2.7), 130.3 (C6, J ) 161.1,
N-{[5-[(p-Tolu yla m in o)m eth ylen e]-1,3-cyclop en ta d ien -
1-yl]m eth ylen e}-1,2,4-tr ia zole-4 a m in e (5). A solution of 13
(0.087 g, 0.405 mmol) in EtOH (6.50 mL) was refluxed with
p-toluidine (0.052 g, 0.485 mmol) for 4 h 30 min. The solvent
was evaporated, and the crude was purified by column
chromatography with the following eluents: 5:1 AcOEt-
hexane, p-toluidine [Rf ) 0.41 (10:1 CHCl3-EtOH)]; AcOEt,
(5) [Rf ) 0.47 (10:1 CHCl3-EtOH)]; 10:1 CHCl3-EtOH, (13)
[Rf ) 0.26 (10:1 CHCl3-EtOH)]. Yield 0.095 g, 85%. mp 224.7
3J C-N ) 3.7), 126.9 (C7, J C-N ) 4.6, J C-N ) 6.8), 122.6 (C5,
2
3
1J ) 165.0), 121.9 (C4, 1J ) 165.6), 115.3 (C2′/C5′, 1J ) 185.7,
2
1J C-N ) 14.6, J C-N ) 2.0), 112.9 (C3), 107.1 (C3′/C4′, 1J )
171.7, J C-N ) 2.7), 48.2 (CH3, 1J )136.9), 41.0 (CH3, 1J )
2
140.8); 15N NMR (CDCl3) δ -272.7 (N1), -171.8 (N1′, J N9-N1′
1
1
) 11.7), -83.5 (N9, J N9-N1′ ) 11.7).
(4a -15N4): 1H NMR (CDCl3) δ 12.90 (br, H10), 8.10 (d, H2/
H8, 3J H2/H8-N1′ ) 4.8), 6.96 (d, H4/H6), 6.92 (m, H2′/H5′, 2J H-N
1
3
) 2.4), 6.48 (t, H5, 3J H5-H4/H6 ) 3.7), 6.22 (m, H3′/H4′, 3J H-N
)
°C (decompose); H NMR (CDCl3) δ 12.77 (d, H10, J H10-H2
)
)
1
5
6.6). 1H NMR (THF-d8) δ 13.51 (ttt, H10, J H10-N1/N9 ) 47.9,
14.0), 8.53 (s, H8), 8.50 (s, H2′/H5′), 8.04 (dd, H2, J H2-H6
4
3J H2/H8-H10 ) 5.2, 2J H10/N1′ ) 1.5), 8.29 (dd, H2/H8, 3J H2/H8-N1′
)
0.7), 7.23 (m, Hm and H6), 7.09 (m, Ho), 7.06 (dd, H4, J H4-H6
) 1.8), 6.51 (dd, H5, 3J H5-H6 ) 3.2, 3J H5-H4 ) 4.2), 2.37 (s, CH3);
13C NMR (CDCl3) δ 157.8 (C8, 1J ) 159.3, 3J ) 3.1), 144.2 (C2,
1J ) 165.5, 3J ) 1.9), 140.8 (C6, 1J ) 164.7), 138.4 (C2′/C5′, 1J
2
5.2), 7.02 (m, H2′/H5′, J H-N ) 2.4), 6.92 (d, H4/H6), 6.35 (t,
H5, 3J H5-H4/H6 ) 3.7), 6.12 (m, H3′/H4′, 3J H-N ) 6.6); 13C NMR
1
1
(CDCl3) δ 148.7 (C2/C8, J ) 164.5, J C-N ) 10.4), 135.2 (C4/
1
1
1
C6, J ) 164.5), 122.4 (C5, J ) 166.9), 117.9 (C3/C7), 117.9
) 212.1), 136.5 (Ci), 135.9 (Cp), 135.7 (C4, J ) 166.6), 130.7
1
1
1
1
2
2
(C2′/C5′, 1J ) 188.2, J C-N ) 14.7), 108.2 (C3′/C4′, J ) 171.8,
2J C-N ) 5.9); 15N NMR (CDCl3) δ -193.3 (N1/N9), -169.8 (N1′,
1J N1′-N9 ) 2.8). 15N NMR (THF-d8) δ -193.8 (N1/N9), -171.6
(N1′).
(Cm, J ) 159.8), 122.0 (C5, J )168.5, J ) J ) 3.0), 119.7
(C7), 117.3 (Co, 1J ) 158.2), 116.7 (C3), 20.9 (CH3, 1J ) 127.3);
15N NMR (CDCl3) δ -237.3 (N1), -167.6 (N1′), -121.7 (N9),
-64.6 (N3′/N4′). The N-D derivative present a deuterium
signal: 2H NMR (CDCl3 + D2O): δ ) 12.66 (D10). Elemental
analysis calcd for C16H15N5: C 69.29, H 5.45, N 25.25; found:
C 69.67, H 5.50, N 25.25.
(4c-15N4): 1H NMR (CDCl3) δ 8.65 (dd, H2, J H2-N1 ) 2.9,
2
3J H2-N1′ ) 6.8), 8.62 (dd, H8, 2J H8-N9 ) 3.0, 3J H8-N1′ ) 6.8), 7.17
(m, H2′′/H5′′), 7.14 (m, H2′/H5′), 7.06 (d, H6), 6.63 (d, H5,
3J H5-H6 ) 5.4), 6.29 (m, H3′′/H4′′), 6.28 (m, H3′/H4′), 3.67 (br
s, H4); 1H NMR (THF-d8) δ 8.94 (dd, H2, 2J H2-N1 ) 2.8, 3J H2-N1′
N-{[5-[(p-Nitr op h en yla m in o)m eth ylen e]-1,3-cyclop en -
ta d ien -1-yl]m eth ylen e}-1,2,4-tr ia zole-4-a m in e (6). A solu-
tion of 13 (0.064 g, 0.298 mmol) in EtOH (7.00 mL) was
refluxed with p-nitroaniline (0.050 g, 0.362 mmol) for 24 h.
The solvent was evaporated, and the crude was purified by
column chromatography with the following eluents: 50:1
CHCl3-EtOH, p-nitroaniline [Rf ) 0.56 (10:1 CHCl3-EtOH)];
20:1 CHCl3-EtOH, (6) [Rf ) 0.34 (10:1 CHCl3-EtOH)], 10:1
2
3
) 6.4), 8.93 (dd, H8, J H8-N9 ) 2.8, J H8-N1′′ ) 6.4), 7.25 (m,
H2′/H5′ or H2′′/H5′′), 7.22 (m, H2′/H5′ or H2′′/H5′′), 7.08 (d,
H6), 6.60 (d, H5, 3J H5-H6 ) 5.4), 6.18 (m, H3′/H4′ or H3′′/H4′′),
6.16 (m, H3′/H4′ or H3′′/H4′′), 3.65 (br s, H4); 13C NMR (CDCl3)
1
1
1
δ 141.0 (C2, J ) 159.5), 139.7 (C8, J ) 160.5), 135.9 (C5, J
1
3
) 169.3), 131.4 (C6, J ) 169.3, J C-N ) 10.4), 116.1 (C2′/C5′
1
1
or C2′′/C5′′, J ) 187.8, J C-N1′ ) 15.2), 116.0 (C2′/C5′ or C2′′/
CHCl3-EtOH, (13) [Rf ) 0.26 (10:1 CHCl3-EtOH)]. Yield
C5′′, J ) 187.5, J C-N1′ ) 15.2), 109.3 (C3′/C4′ or C3′′/C4′′, J
0.009 g, 10%. 1H NMR (CDCl3) δ 12.74 (d, H10, J H10-H2
)
1
1
1
3
2
1
) 171.8, J C-N ) 5.5), 109.0 (C3′/C4′ or C3′′/C4′′, J ) 171.8,
13.8), 8.56 (s, H8), 8.53 (s, H2′/H5′), 8.32 (m, Hm), 8.01(d, H2),
4
2J C-N ) 5.5), 42.3 (C4, 1J ) 124.3); 15N NMR (CDCl3) δ -172.5
7.35 (m, H6), 7.26 (m, Ho), 7.09 (dd, H4, J H4-H6 ) 1.6), 6.59
(N1′ and N1′′), -60.4 (N1, J N-N ) 11.3), -53.6 (N9, J N-N
)
(dd, H5, J H5-H6 ) 3.2, J H5-H4 ) 4.5). HRMS m/e (M+) calcd
for C15H12N6O2 308.10200, found 308.10303.
1
1
3
3
11.5).15N NMR (THF-d8) δ -173.7 (N1′′), -172.5 (N1′), -61.2
(N1), -52.2 (N9).
N-{[5-[(Dim eth ylam in o)m eth ylen e]-1,3-cyclopen tadien -
1-yl]m eth ylen e]-1,3-d im eth yl-1,2,4-tr ia zole-5-a m in e (16).
A solution of 11 (0.50 g, 1.61 mmol) in EtOH (10.0 mL) was
refluxed with 1,3-dimethyl-5-amino-1,2,4-triazole (0.216 g,
1.927 mmol) for 4 h. The solvent was evaporated, and the crude
was purified by column chromatography with the following
eluents: 1:9 EtOH-AcOEt, (16) [Rf ) 0.51 (10:1 CHCl3-
[
15N3]-N-{[5-[(P h en yla m in o)m et h ylen e]-1,3-cyclop en -
ta d ien -1-yl]m eth ylen e}p yr r ole-1-a m in e (3-15N3). A solu-
tion of 15-15N2 (0.098 g, 0.456 mmol) in EtOH (5.00 mL) was
refluxed with labeled aniline (0.054 g, 0.574 mmol) for 2 h 30
min. The solvent was evaporated, and the crude was purified
by column chromatography (1:20 AcOEt-hexane) to afford
3-15N3 (0.095 g, 79%). 1H NMR (CDCl3) δ 13.26 (ddd, H10,
1J H10-N1 ) 88.2, 3J H10-H2 ) 13.5, 1hJ H10‚‚‚N9) 4.0), 8.53 (dd, H8,
2J H8-N9 ) 2.8, 3J H8-N1′ ) 6.9), 7.97 (dd, H2, 5J H2-H6 ) 1.0), 7.43
1
EtOH)], yield 0.18 g, 46%. mp 181.3 °C; H NMR (CDCl3) δ
4
9.26 (s, H2), 9.12 (s, H8), 7.01 (dd, H6, J H6-H4 ) 1.6), 6.97
3
3
(dd, H4), 6.52 (dd, H5, J H5-H4 ) 4.5, J H5-H6 ) 3.2), 3.79 (s,
N-CH3 of triazole), 3.43 (s, CH3), 3.34 (s, CH3), 2.35 (s, C-CH3
of triazole); 13C NMR (CDCl3) δ 160.9 (C8, 1J ) 158.1, 3J )
2
(m, Hm), 7.25 (m, Ho), 7.19 (m, Hp), 7.13 (m, H2′/H5′, J H-N
3
4
) 0.8, J H-N ) 2.3), 7.09 (ddd, H6), 6.91 (ddd, H4, J H4-H6
)
5
3
3
2
1
1.9, J H4-H8 ) 0.6), 6.47 (dd, H5, J H5-H6 ) 3.0, J H5-H4 ) 4.4),
2.3), 158.7 (C5′, 3J ) 10.6), 158.0 (C3′, J ) 7.1), 153.0 (C2, J
6.30 (m, H3′/H4′, J H-N ) 6.1); 13C NMR (CDCl3) δ 149.6 (C8,
)169.4), 135.2 (C6, 1J ) 165.5), 129.0 (C7), 125.4 (C4, 1J )
165.6), 123.1 (C5, J ) 165.7, J ) J ) 3.4), 113.8 (C3), 47.9
(CH3, 1J ) 138.6), 40.5 (CH3, 1J ) 138.4), 33.1 (N-CH3 of
3
1J ) 158.8, J ) 3.7, J C-N ) 6.1), 142.8 (C2, J )166.6, J )
3
1
1
3
1
2
2
2.3, J C-N ) 15.6), 139.8 (Ci, J C-N ) 14.9), 137.5 (C6, 1J
1
1