â-Fragmentation of Primary Alkoxyl Radicals
SCHEME 1. Common Alkoxyl Radical Reactions
SCHEME 2. Proposed Reaction
stable alkyl radical.7 Therefore, these reactions are usually
controlled by thermodynamic stability of the formed products,
although solvent effects and intrinsic geometric properties are
also important factors (Scheme 1).8
For example, Houk found by computational methods that
â-fragmentations of some alkoxyl radicals do not always depend
on the stability of the formed alkyl radical and that particular
bond interactions can sometimes slow the rate of â-fragmenta-
tion.9
treated with allyltributyltin, it gave 1,2-O-isopropylidene-L-
threose 24g,11 as a single product in very good yield. Not even
traces of the hydrogen atom transfer (HAT) product 4 were
detected (Scheme 2).
This unexpected result aroused our attention, not only because
of the apparent synthetic importance of the chiral building
blocks, 1,2-O-isopropylidene-L-threose 2,11 but also because new
findings on the â-fragmentation of alkoxyl radicals might be
uncovered. In this regard, Sua´rez and Herna´ndez12 previously
reported â-fragmentation of primary alkoxyl radicals under
oxidative conditions (PhI or DIB in the presence of I2); however,
neither experimental nor theoretical efforts were carried out to
clarify their unusual results.13 Although the scope of this work
did not specifically address their results, we believe that our
results may offer interesting findings not previously considered
in alkoxyl radical chemistry.
First, we needed to know if the presence of the allyltributyltin
caused the unexpected â-fragmentation reaction. To address this
question, the reaction was conducted with only Bu3SnH and a
catalytic amount of AIBN in refluxing benzene, and the result
was identical. We considered that the presence of the internal
free hydroxyl group might be responsible for â-fragmenta-
tion. To probe this, other alkoxyl radical precursors (5,10 8,
and 10) were synthesized from their respective commercially
available carbohydrate precursors applying Kim’s methodology6b
and subsequently treated under different reaction conditions
(Table 1).
Results and Discussion
As part of an ongoing research project on the generation of
primary alkoxyl radicals, we were trying to generate the 1,2-
O-isopropylidenexylofuranose-1-yl radical A (Scheme 2) from
its corresponding radical B in order to test its reactivity with
allyltributyltin (1f3). However, we observed an unexpected
result. Under classical tin conditions (Bu3SnH/AIBN), when
5-N-phthalimido-1,2-O-isopropylidene-R-D-xylofuranose 110 was
(4) (a) Armas, P.; Francisco, C. G.; Suarez, E. Angew. Chem., Int. Ed.
Engl. 1992, 31, 772. (b) Armas, P.; Francisco, C. G.; Suarez, E. J. Am.
Chem. Soc. 1993, 115, 8865. (c) Hernandez, R.; Leon, E. I.; Moreno, P.;
Suarez, E. J. Org. Chem. 1997, 62, 8974. (d) Francisco, C. G.; Freire, R.;
Gonzalez, C. C.; Suarez, E. Tetrahedron: Asymmetry 1997, 8, 1971. (e)
Francisco, C. G.; Martın, C. G.; Suarez, E. J. Org. Chem. 1998, 63, 2099.
(f) Francisco, C. G.; Martın, C. G.; Suarez, E. J. Org. Chem. 1998, 63,
8092. (g) Francisco, C. G.; Leon, E. I.; Martin. P.; Moreno, P.; Rodriguez,
M. S.; Suarez, E. J. Org. Chem. 2001, 66, 6967. (h) Gonzalez, C. C.;
Kennedy, A. R.; Leon, E. I.; Riesco-Fagundo, C.; Suarez, E. Angew. Chem.,
Int. Ed. 2001, 40, 2326. (i) Francisco, C. G.; Gonzales, C. C.; Paz, N. R.;
Suarez, E. Org. Lett. 2003, 5, 4171.
(5) (a) Bruke, S. D.; Kort, M. E.; Strickland, S. M. S.; Organ, H. M.;
Silks, L. A. Tetrahedron Lett. 1994, 35, 1503. (b) Hatakeyama, S.;
Kawamura, M.; Takano, S. J. Am. Chem. Soc. 1994, 116, 4081. (c)
Francisco, C. G.; Freire, R.; Herrera, A. J.; Perez-Martin, I.; Suarez, E.
Org. Lett. 2002, 4, 1959. (d) Crich, D.; Huang, X.; Newcomb, D. Org.
Lett. 1999, 1, 225. (e) Sartillo-Piscil, F.; Vargas, M.; Anaya de Parrodi, C.;
Quintero, L. Tetrahedron Lett. 2003, 44, 3919.
(6) (a) Johns, A.; Murphy, J. A. Tetrahedron Lett. 1988, 29, 837. (b)
Kim, S.; Lee, T. A.; Song, Y. Synlett 1998, 471. (c) Hartung, J.; Hiller,
M.; Schmidt, P. Liebigs Ann. 1996, 1425. (d) Hartung, J.; Hiller, P.; Schmidt,
P. Chem. Eur. J. 1996, 2, 1014. (e) Hartug, J.; Kneuer, R. Eur. J. Org.
Chem. 2000, 1677.
(7) (a) Gray, P.; Williams, A. Chem. ReV. 1959, 59, 239. (b) Kochi, J.
K. In Free Radicals; Kochi, J. K., Ed.; Wiley-Interscience: New York,
1973; Vol. 2, p 665.
We reasoned that varying the polarity of the solvent (benzene,
THF, and CH3CN) and using a less efficient hydrogen atom
(10) Cruz-Gregorio, S.; Hernandez, L.; Vargas, M.; Quintero, L.; Sartillo-
Piscil, F. J. Mex. Chem. Soc. 2005, 49, 20.
(11) Smith, A. B.; Sulikowski, G. A.; Sulikowski, M. M.; Fujimoto, K.
J. Am. Chem. Soc. 1992, 114, 2567.
(12) (a) Boto, A.; Hernandez, D.; Hernandez, R.; Suarez, E. J. Org. Chem.
2003, 68, 5310. (b) Boto, A.; Hernandez, R.; Montoya, A.; Suarez, E.
Tetrahedron Lett. 2004, 45, 1559.
(13) They reasoned that â-fragmentation of primary alkoxyl radicals in
carbohydrate chains occurs because the resulting radical is stabilized by
the adjacent oxygen, which under oxidative conditions produces an
oxycarbenium ion.
(8) (a) Bacha, J. D.; Kochi, J. K. J. Org. Chem. 1965, 30, 3272. (b)
Walling, C.; Wagner, P. J. J. Am. Chem. Soc. 1963, 85, 2333. (c) Walling,
C.; Padwa, A. J. Am. Chem. Soc. 1963, 85, 1593. (d) Choo, K. Y.; Benson,
S. W. Int. J. Chem. Kinet. 1981, 13, 833.
(9) Wilsey, S.; Dowd, P.; Houk, K. N. J. Org. Chem. 1999, 64, 8801.
J. Org. Chem, Vol. 72, No. 22, 2007 8197