COMMUNICATIONS
6.5 Hz, HG), 4.49 (brs, 8H, HD), 5.61 (t, 4H, J 3.0 Hz, HH), 6.36 (AA'BB'
system, 8H, J 8.0 Hz, HE), 6.53 (AA'BB' system, 8H, J 8.0 Hz, HF), 7.70
(d, 4H, J 8.0 Hz, HB), 8.42 (t, 2H, J 8.0 Hz, HA), 8.50 (s, 4H, HC);
13C NMR (100 MHz, [D6]DMSO): d 25.89, 28.05, 31.50, 60.76, 67.17,
113.91, 127.02, 129.34, 129.97, 130.62, 144.37, 145.25, 158.24, 160.27, FAB-MS
on metal templates with octahedral coordination preference, see:
D. H. Busch, J. Incl. Phenom. 1992, 12, 389 ± 395; N. V. Gerbeleu, V. B.
Arion, J. Burgess, Template Synthesis of Macrocyclic Compounds,
Wiley-VCH, Weinheim, 1999.
[12] A. J. Blake, A. J. Lavery, T. I. Hyde, M. J. Schröder, J. Chem. Soc.
Dalton Trans. 1989, 965 ± 970.
(mBNA matrix): m/z: 1126 [M ClO4 ] ; anal. calcd for:
C62H70O12N6Cl2Zn (1225): C 60.73, H 5.71, N 6.86%, found: C 60.46, H
5.97, N 6.67%.
[13] A. L. Vance, N. W. Alcock, J. A. Heppert, D. H. Busch, Inorg. Chem.
1998, 37, 6912 ± 6920.
[14] J.-P. Sauvage, M. Ward, Inorg. Chem. 1991, 30, 3869 ± 3874.
[15] G. Rapenne, C. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc.
1999, 121, 994 ± 1001.
Route (b) of Scheme 2: A solution of 2,6-pyridinedicarbaldehyde (0.97 g,
7.2 mmol) in methanol (10 mL) was added dropwise over 30 min to a
solution of bis-amine 4 (7.2 mmol) and metal salt (ML2, 3.6 mmol) in
methanol (10 mL). The reaction mixture was stirred at room temperature
for 1 h after which time the [M1]L2 catenate could either be isolated as a
precipitate by filtration, or the solvent removed under reduced pressure
and the resulting solid purified as for the RCM procedure.
[16] C. A. Hunter, Chem. Br. 1998, 34(5), 17.
[17] a) D. A. Leigh, K. Moody, J. P. Smart, K. J. Watson, A. M. Z. Slawin,
Angew. Chem. 1996, 108, 326 ± 321; Angew. Chem. Int. Ed. Engl. 1996,
35, 306 ± 310; b) T. J. Kidd, D. A. Leigh, A. J. Wilson, J. Am. Chem.
Soc. 1999, 121, 1599 ± 1600.
[18] D. A. Leigh, A. Murphy, J. P. Smart, M. S. Deleuze, F. Zerbetto, J. Am.
Chem. Soc. 1998, 120, 6458 ± 6467.
Received: August 14, 2000
Revised: February 5, 2001 [Z15632]
[19] The importance of these structural features for promoting catenate
formation was exemplified by a very recent study which showed that it
is not possible to produce octahedral catenates from terpy ligands
which were not well preorganized for intracomponent cyclization (N.
Belfrekh, C. Dietrich-Buchecker, J.-P. Sauvage, Inorg. Chem. 2000, 39,
5169 ± 5172).
[1] a) Molecular Catenanes, Rotaxanes and Knots (Eds.: J.-P. Sauvage, C.
Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999; for catenanes
based on coordination bonds other than the Sauvage catenates see:
b) G.-J. M. Gruter, F. J. J. de Kanter, P. R. Markies, T. Nomoto, O. S.
Akkerman, F. Bicklehaupt, J. Am. Chem. Soc. 1993, 115, 12179 ±
12180; c) M. Fujita, F. Ibukuro, H. Hagihara, K. Ogura, Nature
1994, 367, 720 ± 723; d) C. Piguet, G. Bernardinelli, A. F. Williams, B.
Bocquet, Angew. Chem. 1995, 107, 618 ± 621; Angew. Chem. Int. Ed.
Engl. 1995, 34, 582 ± 584; e) D. M. P. Mingos, J. Yau, S. Menzer, D. J.
Williams, Angew. Chem. 1995, 107, 2045 ± 2047; Angew. Chem. Int. Ed.
Engl. 1995, 34, 1894 ± 1895; f) A. C. Try, M. M. Harding, D. G.
Hamilton, J. K. M. Sanders, Chem. Commun. 1998, 723 ± 724; g) D.
Whang, K.-M. Park, J. Heo, P. Ashton, K. Kim, J. Am. Chem. Soc.
1998, 120, 4899 ± 4900; h) C. P. McArdle, M. J. Irwin, M. C. Jennings,
R. J. Puddephatt, Angew. Chem. 1999, 111, 3571 ± 3573; Angew. Chem.
Int. Ed. 1999, 38, 3376 ± 3378; i) M. Fujita, Acc. Chem. Res. 1999, 32,
53 ± 61; j) H. W. Gibson, S.-H. Lee, Can. J. Chem. 2000, 78, 347 ± 355;
for catenane-like coordination interpenetrating networks see: k) S. R.
Batten, R. Robson, Angew. Chem. 1998, 110, 1558 ± 1595; Angew.
Chem. Int. Ed. 1998, 37, 1460 ± 1494; l) A. J. Blake, N. R. Champness,
H. Hubberstey, W.-S. Li, M. A. Withersby, M. Schröder, Coord. Chem.
Rev. 1999, 183, 117 ± 138.
[20] Compound 2 was conveniently prepared in three steps from 4-hy-
droxybenzonitrile: 1) HO(CH2)4CH CH2, Ph3P, DEAD, THF, 08C,
59%; 2) LiAlH4, THF, 788C !reflux, 94%; 3) 2,6-pyridinedicarb-
aldehyde, MeOH, 92%.
[21] Compound
4 was conveniently prepared in three steps from
5-hexenyloxybenzylamine: 1) tBoc2O, NEt3, MeOH, 87%;
2) [Ru( CHPh)(PCy3)2Cl2], CH2Cl2, Ar, RT, 24 h, 78%; 3) CF3CO2H,
then NEt3, CH2Cl2, 93%.
[22] [Zn{(E,E)-1}](ClO4)2: C62H70Cl2N6O12Zn ´ 0.5(C2H3N), Mr 1248.04,
crystal size 0.14 Â 0.08 Â 0.06 mm, monoclinic P21/c, a 10.6258(5),
b 17.4158(9), c 33.4757(18) , b 97.232(2)8, V 6145.6(5) 3,
Z 4, 1calcd 1.349 Mgm 3; synchrotron radiation (CCLRC Dares-
bury Laboratory Station 9.8, silicon monochromator, l 0.69280 ),
m 0.553 mm 1, T 150(2) K. 22797 data (7081 unique, Rint 0.0489,
1.65 < q < 21.008) were collected on
a Siemens SMART CCD
diffractometer using narrow frames (0.28 in w), and were corrected
semiempirically for absorption and incident beam decay (transmission
0.83 ± 1.00). The structure was solved by direct methods and refined by
full-matrix least-squares methods on F 2 values of all data (G. M.
Sheldrick, SHELXTL Manual, Version 5, Siemens Analytical X-ray
Instruments, Madison, WI, 1994) to give wR {S[w(Fo2
[2] C. O. Dietrich-Buchecker, J.-P. Sauvage, J.-M. Kern, J. Am. Chem.
Soc. 1984, 106, 3043 ± 3045; for the earliest CuI catenate synthesis,
involving a threaded intermediate complex, see: C. O. Dietrich-
Buchecker, J.-P. Sauvage, J.-P. Kintzinger, Tetrahedron Lett. 1983, 24,
5095 ± 5098.
F 22] S{w(F22]}1/2 0.2984, conventional R 0.1087 for F values of
/
c
o
7081 reflections with Fo2 > 2s(Fo2, S 1.066 for 761 parameters.
3
Residual electron density extremes were 0.974 and 0.563 e
.
The alkyl chains were modeled by using both geometrical and
displacement parameter restraints. Hydrogen atoms were added in
calculated positions and constrained to a riding model. Data for the
copper catenate [Cu{(E,E)-1}](ClO4)2 was collected and solved as
above except: C62H71CuN6O12, Mr 1226.69, crystal size 0.14 Â 0.10 Â
0.01 mm, monoclinic P21/c, a 10.2948(6), b 17.4273(10), c
[3] a) B. Mohr, M. Weck, J.-P. Sauvage, R. H. Grubbs, Angew. Chem. 1997,
109, 1365 ± 1367; Angew. Chem. Int. Ed. Engl. 1997, 36, 1308 ± 1310;
b) M. Weck, B. Mohr, J.-P. Sauvage, R. H. Grubbs, J. Org. Chem. 1999,
64, 5463 ± 5471.
Â
[4] F. Bitsch, C. O. Dietrich-Buchecker, A.-K. Khemiss, J.-P. Sauvage,
A. V. Dosselaer, J. Am. Chem. Soc. 1991, 113, 4023 ± 4025.
[5] C. O. Dietrich-Buchecker, J.-P. Sauvage, J.-M. Kern, J. Am. Chem.
Soc. 1989, 111, 7791 ± 7800.
[6] a) C. Wu, P. R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater.
1991, 3, 569 ± 572; b) J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem.
Soc. Chem. Commun. 1992, 1131 ± 1133.
33.1511(18) , b 96.120(2)8, V 5913.8(6) 3, Z 4, 1calcd
1.378 Mgm 3; synchrotron radiation (CCLRC Daresbury Laboratory
1
Station 9.8, silicon monochromator, l 0.68950 ), m 0.528 mm
,
T 150(2) K. 10342 data (3460 unique, Rint 0.0784, 1.93 < q <
16.508), correction for absorption and incident beam decay (trans-
mission 0.9298 ± 0.9947) wR {S[w(Fo2 F 22] S[w(F 22]}1/2 0.3840,
[7] J.-P. Collin, P. GavinaÄ, J.-P. Sauvage, J. Chem. Soc. Chem. Commun.
1996, 2005 ± 2006.
/
c
o
conventional R 0.1556 for F values of 3460 reflections with Fo2
>
2s(Fo2, S 2.349 for 339 parameters. Residual electron density
extremes were 0.795 and 0.785 e 3. Data for the cobalt catenate
[Co{(E,E)-1}]I2 was collected and solved as the others except:
C63H70CoI2N6.5O4, Mr 1294.99, crystal size 0.14 Â 0.10 Â 0.01 mm,
monoclinic P21/c, a 10.2948(6), b 17.4273(10), c 33.1511(18) ,
b 96.120(2)8. V 5913.8(6) 3, Z 4, 1calcd 1.454 Mgm 3; synchro-
tron radiation (CCLRC Daresbury Laboratory Station 9.8, silicon
monochromator, l 0.68950 ), m 1.386 mm 1, T 150(2) K. 28253
data (5997 unique, Rint 0.1119, 1.93 < q < 20.008), correction for
absorption and incident beam decay (transmission 0.8296 ± 0.9863),
[8] C. O. Dietrich-Buchecker, J. P. Sauvage, Angew. Chem. 1989, 101,
192 ± 195; Angew. Chem. Int. Ed. Engl. 1989, 28, 189 ± 192.
[9] N. Armaroli, L. De Cola, V. Balzani, J.-P. Sauvage, C. O. Dietrich-
Buchecker, J.-M. Kern, A. Bailal, J. Chem. Soc. Dalton Trans. 1993,
3241 ± 3247.
Â
[10] D. J. Cardenas, A. Livoreil, J.-P. Sauvage, J. Am. Chem. Soc. 1996, 118,
11980 ± 11981.
[11] The idea of using octahedral ligand geometries in catenate formation
was actually proposed a decade before the Sauvage tetrahedral system
was introduced (V. I. Sokolov, Russ. Chem. Rev. 1973, 42, 452 ± 463).
For more recent discussions of possible strategies to catenates based
wR {S[w(Fo2 F 22] S[w(F 22]}1/2 0.2662, conventional R 0.1246
/
c
o
1542
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4008-1542 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 8