5
4.2.6. Without C60 under air. The procedures follow the same as
5 mol% C60 under air except no C60 was added.
4.4.7. p-Terphenyl (1g).4b 1H NMR (400 MHz, CDCl3) δ 7.36 (t,
ACCEPTED MANUSCRIPT
J = 7.3 Hz, 2 H), 7.46 (t, J = 7.6 Hz, 4 H), δ 7.65 (d, J = 7.6 Hz, 4
H), δ 7.68 (s, 4 H).
4.4.8. 4-Fluorobiphenyl (1h).4b 38% yield. H NMR (400 MHz,
4.3 Procedures for the base effects on catalytic direct C-H
arylation of benzene.
1
CDCl3) δ 7.13 (t, J = 8.6 Hz, 2 H), 7.35 (t, J = 7.2 Hz, 1 H), 7.44
(t, J = 7.6 Hz, 2 H), 7.53-7.56 (m, 4 H).
4.3.1. With 10 equiv NaOH. C60 (1.6 mg, 0.00224 mmol), 4-
iodotoluene (48.8 mg, 0.224 mmol), NaOH (89.6 mg, 2.24
t
mmol), BuOH (215 ꢂL, 2.24 mmol) were dissolved in benzene
Acknowledgments
(2.0 mL, 22.4 mmol). The mixture was heated at 200 °C. After
confirming the complete consumption of the aryl halide by
GCMS analysis the solvent was removed by rotary evaporator.
The crude residue was purified by column chromatography
(silica gel, 230-400 mesh) eluting with hexane to afford the 4-
methylbiphenyl 1a.
We thank the Innovation and Technology Support Programme
(ITSP/001/12) of the HKSAR, and the People’s Republic of
China for financial support.
References and notes
4.3.2. With 10 equiv CsOH. The procedures follow the same as
10 equiv NaOH except CsOH (336 mg, 2.24 mmol) was used.
1. (a) Cicoira, F.; Santato, C. Adv. Funct. Mater. 2007, 17, 3421-
3434. (b) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf,
U. Angew. Chem., Int. Ed. 2008, 47, 4070-4098. (c) Facchetti, A.;
Vaccaro, L.; Marrocchi, A. Angew. Chem., Int. Ed. 2012, 51,
3520-3523.
2. (a) MedAdNews 200 - World's Best-Selling Medicines,
MedAdNews, 2007. (b) Roughley, S. D.; Jordan, A. M. J. Med.
Chem. 2011, 54, 3451-3479.
3. (a) Tamao, K.; Sumitani, K.; Kisa, Y.; Zambayashi, M.; Fujioka,
A.; Kodama, A.; Nakajima, I.; Minato, A.; Kumada, M. Bull.
Chem. Soc. Jpn. 1976, 49, 1958-1969. (b) Negishi, E.; King, A.
O.; Okukado, N. J. Org. Chem. 1977, 42, 1821-1823. (c) Milstein,
D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636-3638. (d)
Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-524. (e)
Miyaura, N.; Suzuki, A. Chem. Commun. 1979, 866-867. (f)
Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918-920. (g)
Hiyama, T. J. Organomet. Chem. 2002, 653, 58-61.
4. (a) Vallee, F.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc.
2010, 132, 1514-1516. (b) Liu, W.; Cao, H.; Lei, A. Angew.
Chem., Int. Ed. 2010, 49, 2004-2008. (c) Hatakeyama, T.;
Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc.
2009, 131, 11949-11963. (d) Ohmiya, H.; Yorimitsu, H.; Oshima,
K. Chem. Lett. 2004, 33, 1240-1241. (e) Korn, T. J.; Knochel, P.
Angew. Chem., Int. Ed. 2005, 44, 2947-2951. (f) Kobayashi, O.;
Uraguchi, D.; Yamakawa, T. Org. Lett. 2009, 11, 2679-2682. (g)
Tobisu, M.; Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131,
12070-12071.
t
4.3.3. With 10 equiv KOH and without BuOH. The procedures
follow the same as 10 equiv NaOH except KOH (125 mg, 2.24
mmol) and no tBuOH were used.
t
t
4.3.4. With 10 equiv BuOK and without BuOH. The procedures
t
follow the same as 10 equiv NaOH except BuOK (251 mg, 2.24
mmol) and no tBuOH were used.
4.3.5. With 20 equiv KOH. The procedures follow the same as 10
equiv NaOH except KOH (251 mg, 4.48 mmol) was used.
4.3.6. With 30 equiv KOH. The procedures follow the same as 10
equiv NaOH except KOH (377 mg, 6.72 mmol) was used.
o
4.3.7. With 20 equiv KOH at 180 C. The procedures follow the
same as 10 equiv NaOH except KOH (251 mg, 4.48 mmol) was
used and the reaction was heated at 180 °C.
4.4 General Procedures for the C60-catalytic direct C-H
arylation of benzene with aryl halides.
C60 (0.00224 mmol), aryl halides (0.224 mmol), KOH (4.48
t
mmol) and BuOH (2.24 mmol) were dissolved in benzene (2.0
mL, 22.4 mmol). The mixture was heated at 200 °C. After
confirming the complete consumption of the aryl halide by
GCMS analysis the solvent was removed by rotary evaporator.
The crude residue was purified by column chromatography
(silica gel, 230-400 mesh) eluting with hexane to afford the
corresponding biaryls 1.
5. Do, H. Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008,
130, 15185-15192.
6. (a) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.;
Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132,
16737-16740. (b) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.;
Lu, X.-Y.; Huang, K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. Nat. Chem.
2010, 2, 1044-1049. (c) Qiu, Y. T.; Liu, Y. H.; Yang, K.; Hong, W.
K.; Li, Z.; Wang, Z. Y.; Yao, Z. Y.; Jiang, S. Org. Lett. 2011, 13,
3556-3559. Yong, G.-P.; She, W.-L.; Zhang, Y.-M.; Li, Y.-Z.
Chem. Commun. 2011, 47, 11766-11768. (e) Chen, W.-C.; Hsu,
Y.-C.; Shih, W.-C.; Lee, C.-Y.; Chuang, W.-H.; Tsai, Y.-F.; Chen,
P.-Y.; Ong, T.-G. Chem. Commun. 2012, 48, 6702-6704.
7. Hari, D. P.; Schroll, P.; König, B. J. Am. Chem. Soc. 2012, 134,
2958-2961.
8. To, C. T.; Chan, T. L.; Li, B. Z.; Hui, Y. Y.; Kwok, T. Y.; Lam, S.
Y.; Chan, K. S. Tetrahedron Lett. 2011, 52, 1023-1026.
9. Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett.
2008, 10, 4673-4676.
10. Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2011, 50, 5018-
5022.
11. (a) Ng, Y. S.; Chan, C. S.; Chan, K. S. Tetrahedron Lett. 2012, 53,
3911-3914. (b) Xue, Z.-L.; Qian, Y. Y.; Chan, K. S. Tetrahedron
Lett. 2014, 55, 6180-6183. (c) Gai, L.; To, C. T.; Chan, K. S.
Tetrahedron. Lett. 2014, 55, 6373-6376.
12. Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219-9280.
13. Zhou, S.; Doni, E.; Anderson, G. M.; Kane, R. G.; Macdougall, S.
W.; Ironmonger, V. M.; Tuttle, T.; Murphy, J. A. J. Am. Chem.
Soc. 2014, 136, 17818-17826.
14. (a) Bunnett, J. F. Acc. Chem. Res. 1982, 25, 2-9. (b) Doni, E.;
Murphy, J. A. Chem. Commun. 2014, 50, 6073-6087. (c) Yi, H.;
Jutand, A.; Lei, A. Chem. Commun. 2015, 51, 545-548.
15. Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346,
725-727.
1
4.4.1. 4-Methylbiphenyl (1a).4b 71% yield. H NMR (400 MHz,
CDCl3) δ 2.40 (s, 3 H), 7.24 (d, J = 7.9 Hz, 2 H), 7.32 (t, J = 7.3
Hz, 1 H), 7.42 (t, J = 7.6 Hz, 2 H), 7.49 (d, J = 8.0 Hz, 2 H), 7.58
(d, J = 7.4 Hz, 2 H).
1
4.4.2. 3-Methylbiphenl (1b).4b 79% yield. H NMR (400 MHz,
CDCl3) δ 2.43 (s, 3 H), 7.17 (d, J = 7.3 Hz, 1 H), 7.33 (t, J = 7.4
Hz, 2 H), 7.39-7.45 (m, 4 H), 7.59 (d, J = 7.3 Hz, 2 H).
4.4.3. 2-Methylbiphenyl (1c).4b 43% yield. Inseparable with
biphenyl by column chromatography. 1H NMR(400 MHz, CDCl3)
δ 2.27 (s, 3 H), 7.24-7.26 (m, 4 H), 7.31-7.35 (m, 3 H), 7.40 (d, J
=7.3 Hz, 2 H).
1
4.4.4. Biphenyl (1d).4b 78% yield. H NMR (400 MHz, CDCl3) δ
7.35 (t, J = 7.3 Hz, 2 H), 7.45 (t, J = 7.6 Hz, 4 H), 7.60 (d, J = 7.4
Hz, 4 H).
1
4.4.5. 4-Methoxybiphenyl (1e).4b 71% yield. H NMR (400 MHz,
CDCl3) δ 3.85 (s, 3 H), 6.98 (d, J = 8.6 Hz, 2H), 7.30 (t, J = 7.5
Hz, 1 H), 7.42 (t, J = 7.5 Hz, 2 H), 7.54 (t, J = 8.3 Hz, 4 H).
4.4.6. 4-Chlorobiphenyl (1f). Attempted purification by column
chromatography was failed due to trace amount formation.