2372 Organometallics, Vol. 20, No. 11, 2001
Macchioni et al.
3
3
7.38 (d, J o,m ) 7.2, o), 7.35 (t, J p,m ) 8.2, p), 7.28 (t, (3J m,p
+
3J m,o)/2 ) 7.5, m), 6.79 (ddd, J 3,4 ) 7.6, J 3,2 ) 5.5, J 3,5 ) 1.3,
3
3
4
3), - 19.45 (t, 2J H,P ) 16.6, H). 13C{1H} NMR (CD2Cl2, 298 K):
2
δC (ppm) 156.0 (s, 6), 155.3 (s, 2), 137.5 (s, 4), 133.5 (t, J o,P
)
6.1, o), 131.7 (t, 1J ipso,P ) 27.0, ipso), 130.7 (s, p), 128.7 (t, 3J m,P
) 5.0, m), 127.0 (s, 3), 123.8 (s, 5). 31P{1H} NMR (CD2Cl2, 298
K): δP (ppm) 21.4 (s, PPh3). 19F NMR (CD2Cl2, 298 K): δF (ppm)
- 153.50 (br,10BF4-), - 153.55 (q,1J F,B ) 1.0, 11BF4-). IR (thin
film, cm-1): ν(Ir-H) 2155.5, ν(BF4) 1073.6. Anal. Calcd for
C
46H40IrN2P2BF4‚0.25CH2Cl2: C, 56.51; H, 4.15; N, 2.85.
Found: C, 56.48; H, 4.13; N, 2.80. Yield: 83.6%.
Ch a r a cter iza tion of cis,tr a n s-[Ir H2(bip y)(P P h 3)2]P F 6
1
3
(1b). H NMR (CD2Cl2, 298 K): δH (ppm) 8.17 (d, J 2,3 ) 5.3,
3
3
3
2), 7.91 (d, J 5,4 ) 8.2, 5), 7.76 (ddd, J 4,3 ) 7.4, J 4,5 ) 8.1,
4J 4,2 ) 1.4, 4), 7.35 (m, o and p), 7.27 (t, (3J m,p + 3J m,o )/2 ) 7.3,
m), 6.80 (ddd, 3J 3,4 ) 7.6, 3J 3,2 ) 5.5, 4J 3,5 ) 1.1, 3), - 19.44 (t,
2J H,P ) 16.8, H). 13C{1H} NMR (CD2Cl2, 298 K): δC (ppm) 156.0
(s, 6), 155.4 (s, 2), 137.4 (s, 4), 133.5 (t, 2J o,P ) 6.0, o), 131.7 (t,
1J ipso,P ) 26.9, ipso), 130.7 (s, p), 128.7 (t, 3J m,P ) 5.0, m), 127.1
(s, 3), 123.6 (s, 5). 31P{1H} NMR (CD2Cl2, 298 K): δP (ppm)
1
21.4 (s, PPh3), - 143.16 (sept, J P,F ) 711.0, PF6-). 19F NMR
(CD2Cl2, 298 K): δF (ppm) - 73.71 (d,1J F,P ) 711.0, PF6-). IR
(thin film, cm-1): ν(Ir-H) 2150.4, ν(PF6) 836.9. Anal. Calcd
for C46H40IrN2P3F6‚0.5CH2Cl2: C, 52.81; H, 3.91; N, 2.65.
Found: C, 53.00; H, 3.78; N, 2.57. Yield: 84.1.
F igu r e 6. Contour plot of the electrostatic potential in the
plane of the bipy ligand. Contour lines are from 0.08 to 0.3
au with a 0.02 increment between two consecutive con-
tours.
Ch ar acter ization of cis,tr a n s-[Ir H2(bipy)(P P h 3)2]CF3SO3
1
3
(1c). H NMR (CD2Cl2, 298 K): δH (ppm) 8.16 (d, J 2,3 ) 5.4,
3
3
3
2), 8.04 (d, J 5,4 ) 8.2, 5), 7.79 (ddd, J 4,3 ) 7.6, J 4,5 ) 8.2,
4J 4,2 ) 1.5, 4), 7.38 (d, J o,m ) 7.2, o), 7.35 (m, o and p), 6.79
3
3
3
4
2
(ddd, J 3,4 ) 7.6, J 3,2 ) 5.5, J 3,5 ) 1.2, 3), -19.45 (t, J H,P
)
16.8, H). 13C{1H} NMR (CD2Cl2, 298 K): δC (ppm) 156.1 (s, 6),
155.3 (s, 2), 137.5 (s, 4), 133.5 (t, 2J o,P ) 6.1, o), 131.7 (t, 1J ipso,P
) 27.0, ipso), 130.7 (s, p), 128.7 (t, 3J m,P ) 4.9, m), 127.0 (s, 3),
123.9 (s, 5). 31P{1H} NMR (CD2Cl2, 298 K): δP (ppm) 21.4 (s,
PPh3). 19F NMR (CD2Cl2, 298 K): δF (ppm) - 79.27 (s,
CF3SO3-). IR (thin film, cm-1): ν(Ir-H) 2194.2. Anal. Calcd
for C46H40IrN2P2F2SO3: C, 55.13; H, 3.94; N, 2.73. Found: C,
54.90; H, 3.84; N, 2.64. Yield: 82.2%.
solution case. Differences in ion pairing could affect
structure and reactivity. This is of potential importance
since reactions are usually carried out in solution in
organic solvents, many of which favor ion pairing.
Finally, we show how theory can satisfactorily explain
the ion pair structure found in solution as a result of
postive charge buildup at the ring junction (C-2 and
C-2′) of the bipy ligand, not the N, as previously
assumed; in contrast, all the atoms of the H2IrN2
fragment bear a negative charge.
Ch a r a cter iza tion of cis,tr a n s-[Ir H2(bip y)(P P h 3)2]BP h 4
1
3
(1d ). H NMR (CD2Cl2, 298 K): δH (ppm) 8.13 (d, J 2,3 ) 5.3,
2), 7.55 (AB system, 3J 5,4 ) 8.4, 4 and 5), 7.37 (m, o, oX and p),
7.27 (m, m), 7.05 (t,3J m,o ) J m,P ) 7.3, mX), 6.90 (tt, J p,m
)
3
3
4
2
7.2, J p,o ) 1.2, pX), 6.70 (m, 3), - 19.46 (t, J H,P ) 16.8, H).
13C{1H} NMR (CD2Cl2, 298 K): δC (ppm) 164.5 (q, 1J C,B ) 49.2,
ipsoX), 155.7 (s, 6), 155.3 (s, 2), 137.3 (s, 4), 136.3 (s, oX), 133.5
(t, J o,P ) 6.1, o), 131.7 (t, J ipso,P ) 26.9, ipso), 130.7 (s, p),
128.7 (t, 3J m,P ) 5.0, m), 127.0 (s, 3), 126.0 (b, mX), 123.4 (s, 5),
122.1 (s, pX). 31P{1H} NMR (CD2Cl2, 298 K): δP (ppm) 21.4 (s,
PPh3). IR (thin film, cm-1): ν(Ir-H) 2171.1. Anal. Calcd for
Exp er im en ta l Section
All operations were carried out under argon atmosphere
using standard Schlenk techniques. Solvents were dried over
calcium hydride (CH2Cl2) or sodium/benzophenone (Et2O).
Hexane was degassed prior use. IR spectra were recorded on
a Midac M1200 FT-IR spectrometer. Microanalyses were
carried out by Robertson Microlit Laboratories. One- and two-
dimensional 1H, 13C, 19F, and 31P NMR spectra were measured
on a Bruker DRX 400 NMR spectrometer. Referencing is
relative to external TMS (1H and 13C), CFCl3 (19F), and 85%
H3PO4 (31P). NMR samples were prepared dissolving about 20
mg of compound in 0.6 mL of deuterated solvent. Two-
dimensional 1H NOESY and 19F{1H} HOESY spectra were
recorded with a mixing time of 500-800 ms.
cis,tr a n s-[Ir H2(bip y)(P RP h 2)2]X (1, 2). Typ ica l P r oce-
d u r e. F or 2: [Ir(cod)(PMePh2)2]PF6 (1 equiv, 286.3 mg, 0.338
mmol) and 2,2′-bipyridyl (1 equiv, 53.0 mg, 0.338 mmol) were
dissolved in degassed CH2Cl2 (10 mL). The resulting red
solution was cooled to 0 °C. Dihydrogen gas was bubbled for
20 min, with constant stirring. To the orange solution, diethyl
ether (100 mL) was added dropwise to precipitate 250.9 mg of
beige solid (82.9%), which was obtained by filtration in vacuo,
and dried in vacuo. Recrystallization is performed with CH2-
Cl2/Et2O.
2
1
C
70H60IrN2P2B‚1.5CH2Cl2: C, 64.98; H, 4.81; N, 2.12. Found:
C, 65.26; H, 4.61; N, 1.85. Yield: 68.1%.
Ch a r a cter iza tion of cis,tr a n s-[Ir H2(bip y)(P P h 2Me)2]-
1
3
P F 6 (2). H NMR (CD2Cl2, 298 K): δH (ppm) 8.46 (dd, J 2,3
)
5.4, 5J 2,5 ) 0.7, 2), 7.93 (d, 3J 5,4 ) 8.0, 5), 7.87 (ddd, 3J 4,3 ) 7.5,
3J 4,5 ) 8.2, J 4,2 ) 1.5, 4), 7.33 (m, p), 7.25 (m, o and m), 7.08
4
(ddd, J 3,4 ) 7.1, J 3,2 ) 5.5, J 3,5 ) 1.4, 3), 1.88 (t Harris,17b
3
3
4
| J H,P + 4J H,P| ) 6.4, PMePh2), -19.87 (t, 2J H,P ) 16.8, H). 13C-
2
{1H} NMR (CD2Cl2, 298 K): δC (ppm) 155.9 (s, 6), 155.4 (s, 2),
1
2
137.5 (s, 4), 133.4 (t, J ipso,P ) 26.7, ipso), 132.0 (t, J o,P ) 6.0,
3
o), 130.5 (s, p), 128.7 (t, J m,P ) 5.0, m), 127.5 (s, 3), 123.8 (s,
5), 17.0 (t, | J C,P + 3J C,P| ) 37.6, PMePh2). 31P{1H} NMR (CD2-
1
Cl2, 298 K): δP (ppm) - 0.27 (s, PMePh2), - 143.14 (sept, 1J P,F
) 711.0, PF6-). 19F NMR (CD2Cl2, 298 K): δF (ppm) - 73.50
(d,1J F,P ) 711.0, PF6-). IR (thin film, cm-1): ν(Ir-H) 2176.1,
ν(PF6) 836.2. Anal. Calcd for C36H36IrN2P3F6: C, 44.62; H, 3.84;
N, 2.74. Found: C, 44.58; H, 4.14; N, 2.75. Yield: 82.9%.
Str u ctu r a l Deta ils. The structures of complexes 1b and
1c have been fully reported.13,14 The nonbonded interionic
distances were obtained from the crystal structures of 1b and
1c, registered in the Cambridge Structural Database System.
The hydrogen atom positions of the bipyridyl ligand and the
Ch a r a cter iza tion of cis,tr a n s-[Ir H2(bip y)(P P h 3)2]BF 4
3
(1a ). 1H NMR (CD2Cl2, 298 K): δH (ppm) 8.16 (ddd, J 2,3
)
5.5, 4J 2,4 ) 1.6, 5J 2,5 ) 0.8, 2), 8.00 (ddd, 3J 5,4 ) 8.2, 4J 5,3 ) 1.1,
5J 5,2 ) 1.0, 5), 7.78 (ddd, J 4,3 ) 7.6, J 4,5 ) 8.2, J 4,2 ) 1.6, 4),
3
3
4