The Journal of Organic Chemistry
Article
1
2-Pyridyl 3-Nitrobenzoate (6b). Data: mp 88−90 °C; H NMR
characteristics (500 MHz, CDCl3) δ 9.074−9.067 (t, J = 2 Hz, 1H), δ
8.564−8.524 (dd, J = 7 Hz, 1H), δ 8.522−8.506 (d, J = 8 Hz, 1H), δ
8.500−8.484 (dd, J = 8 Hz, 1H), δ 7.915−7.880 (dt, J = 8 Hz, 1H), δ
7.763−7.732 (t, 8 Hz, 1H), δ 7.349−7.323 (dd, J = 8 Hz, 1H), δ
7.257−7.241 (d, J = 8 Hz, 1H); and elemental analysis (Calcd for
C12H8N2O4: C, 59.02; H, 3.30. Found: C, 59.07; H, 3.28).
(4) (a) Llinas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651−654.
(b) Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185−
2189. (c) Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem., Int. Ed.
2002, 41, 2581−2584. (d) Fife, T. H.; Chauffe, L. J. Org. Chem. 2000,
65, 3579−3586. (e) Spillane, W. J.; Brack, C. J. Chem. Soc., Perkin
Trans. 2 1998, 2381−2384. (f) Maude, A. B.; Williams, A. J. Chem.
Soc., Perkin Trans. 2 1997, 179−183. (g) Maude, A. B.; Williams, A. J.
Chem. Soc., Perkin Trans. 2 1995, 691−696.
(5) (a) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett.
2006, 432, 426−430. (b) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I.
Chem. Phys. Lett. 2006, 426, 280−284. (c) Oh, H. K.; Oh, J. Y.; Sung,
D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624−5629. (d) Oh, H. K.; Jin, Y.
C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240−1244.
(e) Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557−567.
(6) (a) Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem.
2007, 72, 3823−3829. (b) Um, I. H.; Han, J. Y. J. Org. Chem. 2009, 74,
3073−3078.
(7) (a) Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem.
2000, 65, 5659−5663. (b) Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S.
E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671−7677. (c) Um, I. H.; Lee, S.
E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999−9005.
(8) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970−
6980.
(9) (a) Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668−
1672. (b) Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50,
3595−3600. (c) Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin
Trans. 2 1983, 453−457. (d) Castro, E. A.; Aguayo, R.; Bessolo, J.;
Santos, J. G. J. Org. Chem. 2005, 70, 7788−7791. (e) Castro, E. A.;
Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530−
3536. (f) Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org.
Chem. 2004, 69, 5399−5404. (g) Castro, E. A.; Aguayo, R.; Santos, J.
G. J. Org. Chem. 2003, 68, 8157−8161.
2-Pyridyl 4-N,N-Dimethylaminobenzoate (6i). Data: mp 160−
162 °C; H NMR characteristics (500 MHz, CDCl3) δ 8.446−8.433
1
(dd, J = 2 Hz, 1H), δ 8.089−8.072 (d, J = 8 Hz, 2H), δ 7.817−7.783
(dt, J = 8 Hz, 1H), δ 7.231−7.196 (m, 2H), δ 6.696−6.678 (d, J = 8
Hz, 2H), δ 3.072 (s, 6H); and elemental analysis (Calcd for
C14H14N2O2: C, 69. 41; H, 5.82. Found: C, 69.37; H, 5.84).
Kinetics. The kinetic study was performed using a UV−vis
spectrophotometer equipped with a constant temperature circulating
bath. All of the reactions in this study were carried out under pseudo-
first-order conditions in which the amine concentration was at least 20
times greater than the substrate concentration. Typically, the reaction
was initiated by adding 5 μL of a 0.02 M substrate stock solution in
MeCN by a 10 μL syringe to a 10 mm UV cell containing 2.50 mL of
the reaction medium and amine. The reactions were followed by
monitoring the appearance of the leaving group up to nine half-lives.
Product Analysis. 2-Pyridyloxide was liberated quantitatively and
identified as one of the products by comparison of the UV−vis
spectrum at the end of reaction with that of the authentic sample
under the experimental conditions.
ASSOCIATED CONTENT
* Supporting Information
■
S
1
Kinetic conditions and results including H NMR spectra for
compounds 6a, 6b, and 6i. This material is available free of
(10) (a) Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002,
67, 8995−8998. (b) Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org.
Chem. 2002, 67, 3874−3877. (c) Oh, H. K.; Kim, S. K.; Lee, H. W.;
Lee, I. New J. Chem. 2001, 25, 313−317.
AUTHOR INFORMATION
Corresponding Author
■
(11) (a) Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006,
71, 5800−5803. (b) Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem.
2005, 70, 1438−1444.
Notes
The authors declare no competing financial interest.
(12) Um, I. H.; Bae, A. R. J. Org. Chem. 2012, 77, 5781−5787.
(13) Carroll, F. A. Perspectives on Structure and Mechanism in Organic
Chemistry; Brooks/Cole: New York, 1988; pp 371−386.
(14) (a) Ugi, I.; Beck, F. Chem. Ber. 1961, 94, 1839. (b) Kevill, D. N.;
D’Souza, M. J. J. Org. Chem. 2004, 69, 7044−7050. (c) Kevill, D. N. In
The Chemistry of the Functional Groups. The Chemistry of Acyl Halrides;
Patai, S., Ed.; Wiley: New York, 1972; Chapter 12.
ACKNOWLEDGMENTS
■
This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (2012-R1A1B-
3001637). T.I.U. is also grateful for the Intensive Science
Program of Dongbuk High School.
(15) (a) Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267−
385. (b) Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129−139.
(c) Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965−970.
(16) (a) Badal, M. M. R.; Zhang, M.; Kobayashi, S.; Mishima, M.
Bull. Chem. Soc. Jpn. 2013, 86, 856−863. (b) Zhang, M.; Badal, M. M.
R.; Koppel, I. A.; Mishima, M. Bull. Chem. Soc. Jpn. 2013, 86, 813−820.
(c) Than, S.; Badal, M.; Itoh, S.; Mishima, M. J. Phys. Org. Chem. 2010,
23, 411−417. (d) Itoh, S.; Badal, M.; Mishima, M. J. Phys. Org. Chem.
2009, 113, 10075−10080. (e) Than, S.; Maeda, H.; Irie, M.; Kikukawa,
K.; Mishima, M. Int. J. Mass. Spectrom. 2007, 263, 205−214. (f) Maeda,
H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn.
2007, 80, 195−203.
REFERENCES
■
(1) (a) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms;
Longman: Singapore, 1997; Chapter 7. (b) Lowry, T. H.; Richardson,
K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper
Collins Publishers: New York, 1987; Chapter 8.5. (c) Jencks, W. P.
Catalysis in Chemistry and Enzymology; McGraw Hill: New York, 1969;
Chapter 10.
(2) (a) Castro, E. A. Pure Appl. Chem. 2009, 81, 685−696. (b) Castro,
E. A. J. Sulfur Chem. 2007, 28, 401−429. (c) Castro, E. A. Chem. Rev.
1999, 99, 3505−3524. (d) Jencks, W. P. Chem. Rev. 1985, 85, 511−
527. (e) Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345−375. (f) Jencks,
W. P. Acc. Chem. Res. 1980, 13, 161−169.
(3) (a) Pavez, P.; Millan, D.; Morales, J. I.; Castro, E. A.; Lopez, A.
C.; Santos, J. G. J. Org. Chem. 2013, 78, 9670−9676. (b) Castro, E. A.;
Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J.
G. J. Org. Chem. 2009, 74, 9173−9179. (c) Castro, E. A.; Ramos, M.;
Santos, J. G. J. Org. Chem. 2009, 74, 6374−6377. (d) Castro, E. A.;
Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679−2685.
(e) Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70,
8088−8092.
(17) Spillane, W. J.; McGrath, P.; Brack, C.; O’Byrne, A. B. J. Org.
Chem. 2001, 66, 6313−6316.
(18) Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510−7515.
(19) Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p
159.
(20) Koh, H. J.; Shin, C. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin
Trans. 2 1998, 1329−1332.
(21) Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org.
Chem. 1997, 62, 5780−5784.
1211
dx.doi.org/10.1021/jo402629e | J. Org. Chem. 2014, 79, 1206−1212