7604
M. G. Ponzo et al. / Tetrahedron Letters 43 (2002) 7601–7604
Lieber, E.; Ramachandran, J. Can. J. Chem. 1959, 37,
Acknowledgements
101–109; (d) Solanki, M. S.; Trivedi, J. P. J. Indian Chem.
Soc. 1971, 48, 843–846; (e) Graubaum, H.; Martin, D. Z.
Chem. 1985, 25, 136–137.
Crompton Co., the Natural Science and Engineering
Research Council (NSERC) of Canada, the Environ-
mental Science and Technology Alliance Canada
(ESTAC), and the Ontario Government supported this
work. M.P. thanks NSERC for an Undergraduate
Scholarship. R.A.B. gratefully acknowledges additional
17. Stanovnik, B.; Tisler, M.; Valencic, B. Org. Prep. Proced.
Int. 1978, 10, 59–62.
18. (a) Hoff, S.; Blok, A. P. Recl. Trav. Chim. Pays-Bas
1974, 93, 317–319; (b) Floch, L.; Martvon, A.; Uher, M.;
Lesko, J.; Weis, W. Collect. Czech. Chem. Commun. 1977,
42, 2945–2952; (c) Marchalin, M.; Martvon, A. Collect.
Czech. Chem. Commun. 1980, 45, 2329–2333.
19. Vorbruggen, H.; Krolikiewicz, K. Synthesis 1979, 1, 34–
35.
support through
a Premier’s Research Excellence
Award. We thank Dr. A.B. Young for mass spectro-
metric analysis. We thank Chiaki Ishii, Ming Shen and
Justyna Grzyb for initial studies on the synthesis of
thiocarbamoylimidazolium salts.
20. (a) Hussein, A. Q.; Jochims, J. C. Chem. Ber. 1979, 112,
1956–1972; (b) L’abbe, G.; Buelens, K. J. Heterocycl.
Chem. 1990, 27, 1993–1995.
References
21. (a) Lieber, E.; Lawyer, C. B.; Trivedi, J. P. J. Org. Chem.
1961, 26, 1644–1646; (b) Lieber, E.; Rao, C. N. R.;
Lawyer, C. B.; Trivedi, J. P. Can. J. Chem. 1963, 41,
1643–1644.
22. Martvon, A.; Floch, L.; Sekreta´r, S. Tetrahedron 1978,
34, 453–456.
1. Sneader, W. Drug Prototypes and their Exploitation;
Wiley: Chichester, 1996.
2. (a) Nefzi, A.; Ostresh, J. M.; Houghten, R. A. Chem.
Rev. 1997, 97, 449–472; (b) Dolle, R. E.; Nelson, K. H.,
Jr. J. Comb. Chem. 1999, 1, 235–282.
23. Recent calculations (6-31G basis set) indicate that elec-
trocyclization of thioformyl azide to thiatriazole is
exothermic by 5 kcal mol−1, occurring with an activation
3. Staab, K. M.; Bauer, H.; Schneider, K. M. Azolides in
Organic Synthesis and Biochemistry; Wiley-VCH: Wein-
heim, 1998.
4. (a) Batey, R. A.; Santhakumar, V.; Yoshina-Ishii, C.;
Taylor, S. D. Tetrahedron Lett. 1998, 39, 6267–6270; (b)
Batey, R. A.; Yoshina-Ishii, C.; Taylor, S. D.; Santhaku-
mar, V. Tetrahedron Lett. 1999, 40, 2669–2672; (c) Batey,
R. A.; Shen, M.; Santhakumar, V.; Yoshina-Ishii, C.
Comb. Chem. High Throughput Screening 2002, 5, 219–
232.
5. Batey, R. A.; Powell, D. A. Org. Lett. 2000, 2, 3237–
3240.
6. Batey, R. A.; Shen, M.; Lough, A. J. Org. Lett. 2002, 4,
1411–1414.
7. For reviews, see: (a) Jensen, K. A.; Pedersen, C. Adv.
Heterocycl. Chem. 1964, 3, 263–284; (b) Holm A. Adv.
Heterocycl. Chem. 1976, 20, 145–174; (c) Holm A.;
Larsen B. D. 1,2,3,4-Thiatriazoles. In Comprehensive
Heterocyclic Chemistry II; Storr, R. C., Ed.; Elsevier:
Oxford, 1996; pp. 691–731.
8. Ikeda, G. J. J. Med. Chem. 1973, 16, 1157–1161.
9. Cowper, A. J.; Astik, R. R.; Thaker, K. A. J. Indian
Chem. Soc. 1981, 58, 1087–1088.
barrier of 18 kcal mol−1
. See: Abu-Eittah, R. H.;
Moustafa, H.; Al-Omar, A. M. Chem. Phys. Lett. 2000,
318, 276–288.
24. General synthetic procedure. CAUTION: although we
encountered no problems, azides and nitrogen rich com-
pounds can be potentially explosive and should be handled
with due caution.26 To a solution of TCDI (258 mg, 1.3
mmol) in MeCN (5 mL) was added the amine (1.3 mmol)
and this was stirred at room temperature for 1 h.
Iodomethane (0.81 mL, 13.0 mmol) was then added and
the reaction stirred at room temperature for 18–48 h. The
excess iodomethane was fully removed by azeotropic
distillation with MeCN (2×20 mL). The resulting residue
was taken up in MeCN (5 mL). NaN3 (254 mg, 3.9
mmol) was added and the mixture was stirred at room
temperature for 18–24 h. The solvent was removed in
vacuo, and the crude product purified using silica gel
column chromatography.
25. (Methyl-[1,2,3,4]thiatriazol-5-yl-amino)-acetic acid ethyl
ester (Table 3, entry 3): The crude reaction mixture was
purified by silica gel chromatography (7:3 hexanes/EtOAc
to 1:1 hexanes/EtOAc as a gradient). The product was
obtained as a yellow oil in 94% yield (223 mg). Rf=0.15
(7:3 hexanes/EtOAc); IR (nujol) w 2927, 2853, 1747, 1557,
10. Wahab, A.; Rao, R. P. Boll. Chim. Farm. 1978, 117,
107–112.
11. Krishnamurthy, V. N.; Rao, K. V. N.; Rao, P. L. N.;
Praphulla, H. B. Br. J. Pharmac. Chemother. 1967, 31,
1–10.
1448, 1375, 1210, 1026 cm−1 1H NMR (300 MHz,
;
CDCl3) l 4.39 (2H, s), 4.22 (2H, q, J=7.0 Hz), 3.29 (3H,
s), 1.28 (3H, t, J=7.0 Hz); 13C NMR (75 MHz, CDCl3)
l 180.48, 167.74, 62.20, 55.37, 44.17, 14.50; HRMS (EI)
calculated for (M+) C6H10N4O2S: 202.0519; observed:
202.0525.
12. Singh, H.; Yadav, L. D. S. Agric. Biol. Chem. 1976, 40,
759–764.
13. Wahab, A. Arzneim.-Forsh. 1979, 29, 728–729.
14. Varma, R. S.; Chatterjee, D. Indian J. Pharm. Sci. 1986,
48, 162–172.
26. For discussion on the hazards associated within azides,
see: Prudent Practices in the Laboratory: Handling and
Disposal of Chemicals; National Academy Press: Wash-
ington, DC, 1995.
15. Freund, M.; Schander, A. Ber. 1896, 29, 263–284.
16. (a) Lieber, E.; Oftedahl, E.; Pillai, C. N.; Hites, R. D. J.
Org. Chem. 1957, 22, 441–442; (b) Lieber, E.; Pillai, C.
N.; Hites, R. D. Can. J. Chem. 1957, 35, 832–842; (c)