Communications
concentration of [18]crown-6. The Job plot experiment based on UV/
U. S. Schubert, Adv. Mater. 2004, 16, 1043; e) B. J. Benjamin,
J. J. R. Stuart, J. Am. Chem. Soc. 2003, 125, 13922.
Vis spectroscopic analysis was performed in CHCl3/CH3CN (1:1), and
the total concentration (polymer+ folding agent) was maintained at
12 mm for the polymer and 6 mm for the model compound.
Synthesis of the polymer: Hexaethylene glycol diamine[15]
(0.494 g, 1.76 mmol) was placed in the reaction vessel and dissolved
in freshly distilled m-cresol (3 mL). The purified pyromellitic
dianhydride (0.384 g, 1.76 mmol) was added to this solution in one
portion, and the reaction mixture was stirred at 858C for 2 h under a
continuous flow of N2 gas. The reaction mixture was cooled to room
temperature, and m-cresol (2 mL), dry toluene (5 mL), and isoquino-
line (8 drops) were added. The reaction mixture was stirred at 1858C
for another 6 h in an inert atmosphere with continuous azeotropic
removal of water. The reaction mixture was cooled to room temper-
ature, and the viscous liquid was poured into methanol (50 mL). The
fine powdery precipitate was centrifuged, redissolved in a minimum
volume of chloroform, and reprecipitated from methanol to obtain
the desired polymer as a white fibrous material. The product was
dried under vacuum at 1008C for 3 h. Yield: 62%.
For fractionation, methanol was added dropwise to a solution of
the polymer (150 mg) in chloroform (10 mL) until the solution
became cloudy. The mixture was stirred for another 15 min as a
colorless oil separated and stuck to the walls of the vessel. The
supernatant was decanted, and the oil was dissolved in chloroform
(1 mL) and reprecipitated from methanol to form the fibrous
colorless polymer. The product was dried under vacuum for 3 h at
1008C, and the recovery was found to be approximately 30%.
1H NMR (400 MHz, CDCl3): d = 8.257 (s, 2H, Ar-H), 3.950 (t,
4H, N-CH2), 3.768 (t, 4H, N-CH2-CH2-), 3.658–3.581 ppm (m, 16H,
rest of the oligoethylene protons); 13C NMR: d = 166.17, 137.26,
118.27, 70.59, 70.53, 70.03, 67.68, 37.93 ppm. Elemental analysis (%)
calcd for C22H26N2O9: C 57.14, H 5.66, N 6.06; found: C 56.82, H 5.51,
N 5.93.
[6] a) Y. Hamuro, S. J. Geib, A. D. J. Hamilton, J. Am. Chem. Soc.
1997, 119, 10587; b) Y. Hamuro, S. J. Geib, A. D. J. Hamilton, J.
Am. Chem. Soc. 1996, 118, 7529; c) J. Zhu, R. D. Parra, H. Zeng,
E. Skrzypczak-Jankun, X. C. Zeng, B. Gong, J. Am. Chem. Soc.
2000, 122, 4219; d) L. Yuan, H. Zeng, K. Yamato, A. R. Sanford,
W. Feng, H. S. Atreya, D. K. Sukumaran, T. Szyperski, B. Gong,
J. Am. Chem. Soc. 2004, 126, 16528.
[7] a) V. Berl, I. Huc, R. G. Khoury, J. M. Lehn, Nature 2000, 407,
720; b) A. Petitjean, L. A. Cuccia. J. M. Lehn, H. Nierengarten,
M. Schmutz, Angew. Chem. 2002, 114, 1243; Angew. Chem. Int.
Ed. 2002, 41, 1195.
[8] a) A. Tanatani, M. J. Mio. , J. S. Moore, J. Am. Chem. Soc. 2001,
123, 1792; b) R. B. Prince, L. Brunsveld, E. W. Meijer, J. S.
Moore, Angew. Chem. 2000, 112, 234; Angew. Chem. Int. Ed.
2000, 39, 228; c) J. C. Nelson, J. G. Saven, J. S. Moore, P. G.
Wolynes, Science 1997, 277, 1793; d) J. M. Heemstra, J. S. Moore,
J. Am. Chem. Soc. 2004, 126, 1648; for related polymeric systems,
see; e) R. S. Hecht, A. Khan, Angew. Chem. 2003, 115, 6203;
Angew. Chem. Int. Ed. 2003, 42, 6021; f) L. Arnt, G. N. Tew,
Macromolecules 2004, 37, 1283.
[9] a) W. Wang, L.-S. Li, G. Helms, H.-H. Zhou, A. D. Q. Li, J. Am.
Chem. Soc. 2003, 125, 1120; b) A. D. Q. Li, W. Wang, L.-Q.
Wang, Chem. Eur. J. 2003, 9, 4594; c) E. E. Neuteboom, S. C. J.
Maskers, E. W. Meijer, R. A. J. Janssen, Macromol. Chem. Phys.
2004, 205, 217; d) R. S. Lokey, B. L. Iverson, Nature 1995, 375,
303; e) J. Q. Nguyen, B. L. Iverson, J. Am. Chem. Soc. 1999, 121,
2639; f) A. J. Zych, B. L. Iverson, J. Am. Chem. Soc. 2000, 122,
8898; g) G. J. Gabriel, B. L. Iverson, J. Am. Chem. Soc. 2002, 124,
15174; h) M. A. Balbo Block, S. Hecht, Macromolecules 2004,
37, 4761.
[10] S. Ghosh, S. Ramakrishnan, Angew. Chem. 2004, 116, 3326;
Angew. Chem. Int. Ed. 2004, 43, 3264.
Received: April 27, 2005
[11] S. Ghosh, S. Ramakrishnan, Macromolecules 2005, 38, 676.
[12] K+ and NH4+ ions are known to have similar size-selective
preferences on complexation with crown ethers. We have shown
that a donor–acceptor polymer that contains a 6OE spacer forms
complexes most strongly with K+ ions.[10,11] Therefore, a poly-
imide that contains 6OE spacers was chosen in the present study.
For reviews of the complexation of crown ethers and podands
with cations, see: a) G. K. Gokel, W. M. Leevy, M. E. Weber,
Chem. Rev. 2004, 104, 2723; b) H. G. Lohr, L. F. Vogtle, Acc.
Chem. Res. 1985, 18, 65, and references therein; c) Comprehen-
sive Supramolecular Chemistry, Vol. 1 (Ed.: G. W. Gokel),
Pergamon/Elsevier, Oxford, 1996; d) R. M. Izatt, J. S. Brad-
Shaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen, Chem. Rev.
1985, 85, 271.
[13] a) G. Kaiser, T. Jarrosson, S. Otto, Y.-F. Ng, A. D. Bond, J. K. M.
Sanders, Angew. Chem. 2004, 116, 1993; Angew. Chem. Int. Ed.
2004, 43, 1959; b) L. Kovbasyuk, R. Kramer, Chem. Rev. 2004,
104, 3161; c) F. Ithan, G. K. Blanchette, V. Rotello, Macro-
molecules 1999, 32, 6159; d) V. Berl, M. J. Krische, I. Huc, J. M.
Lehn, R. Schmutz, Chem. Eur. J. 2000, 6, 1938.
Published online: July 29, 2005
Keywords: charge transfer · crown compounds ·
.
donor–acceptor systems · polymer folding
[1] a) G. Wulff, Chem. Rev. 2002, 102, 1; b) K. Haupt, K. Mosbach,
Chem. Rev. 2000, 100, 2495; c) Molecularly Imprinted Polymers,
Man-Made mimics of Antibodies and their Application in
Analytical Chemistry (Ed.: B. Sellergren), Elsevier, New York,
2001; d) S. C. Zimmerman, N. G. Lemcoff, Chem. Commun.
2004, 5.
[2] a) S. H. Gellman, Acc. Chem. Res. 1998, 31, 173; b) D. J. Hill,
M. J. Mio, R. B. Prince, T. S. Huges, J. S. Moore, Chem. Rev.
2001, 101, 3893; c) C. Schmuck, Angew. Chem. 2003, 115, 2552;
Angew. Chem. Int. Ed. 2003, 42, 2448.
[3] a) J. M. Lehn, Supramolecular Chemistry—Concepts and Per-
spectives, Wiley-VCH, Weinheim, 1995; b) C. A. Schalley, A.
Lutzen, M. Albrecht, Chem. Eur. J. 2004, 10, 1072.
[14] M. W. P. L. Baars, A. J. Karlsson, V. Sorokin, B. F. W. Waal,
E. W. de Meijer, Angew. Chem. 2000, 112, 4432; Angew. Chem.
Int. Ed. 2000, 39, 4262.
[15] For synthetic details, see the Supporting Information.
[16] J. G. Liu, M. H. He, Z. X. Li, Z. G. Qian, F. S. Wang, S. Y. J. J.
Yang, J. Polym. Sci. A 2002, 40, 1572.
[4] a) J.-M. Lehn, Supramolecular Polymers (Ed.: A. Cifferi),
Marcel Dekker, New York, 2000, p. 615; b) S. C. Zimmerman,
P. S. Corbin, Struct. Bonding (Berlin) 2000, 96, 63; c) L.
Brunsveld, J. A. J. M. Vekemans, J. H. K. K. Hirschberg, R. P.
Sijbesma, E. W. Meijer, Proc. Natl. Acad. Sci. USA 2002, 99,
4977; d) R. P. Sijbesma, E. W. Meijer, Chem. Commun. 2003, 5;
e) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma,
Chem. Rev. 2001, 101, 4071; f) V. Berl, M. Schmutz, M. J.
Krische, R. G. Khoury, J.-M. Lehn, Chem. Eur. J. 2002, 8, 1227.
[5] a) D. Yu-Bin, W. Peng, H. Ru-Qi, D. S. Mark, Inorg. Chem. 2004,
43, 4727; b) U. S. Schubert, C. Eschbaumer, Angew. Chem. 2002,
114, 3016; Angew. Chem. Int. Ed. 2002, 41, 2892; c) H. Hofmeier,
U. S. Schubert, Chem. Soc. Rev. 2004, 33, 373; d) P. R. Andres,
[17] All spectral data and gel-permeation chromatograms are
available in the Supporting Information.
[18] The increase in intensity is simply a reflection of the increase in
the concentration of the donor species, whereas the downfield
shift arises from the mole-fraction weighted average of the free
and complexed naphthalene units. It may be recalled that
formation of a CT complex generally causes an upfield shift of
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 5441 –5447