6
Keglevich, Kova´cs, and Csatlo´s
Using PMHS in a Quantity of 5 Equiv. The re-
raphy (hexane–ethyl acetate, 9:1 as an eluent) of the
residue afforded the sulfide (11) as a dense oil. (For
the details, see Table 5.)
ductions were carried out as those with PS shown
above using 1.8 mmol (0.068 mL) of PMHS. The
phosphines (2, 4, 6, and 8) were obtained as a white
solid (2) or as colorless oils (4, 6, and 8). (For the
details, see Tables 1–4.)
3-Methyl-1-phenyl-3-phospholene 1-sulfide (11).
31P NMR (CDCl3) δ: 55.3, δ (CDCl3) [35]: 55.3;
[M + H]+
= 209.0554, C11H14PS requires [M +
found
The following phosphines were prepared:
H]+ = 209.0554.
Triphenylphosphine (2). Based on the experimental
details presented in Table 1 (entry 3), yield: 95%;
white solid, mp: 81–82°C; mp. [32]: 79–81°C; 31P
NMR (CDCl3) δ: –5.0, δ: (CDCl3) [32]: –5.1; [M +
REFERENCES
[1] Allen, D. W. In Organophosphorus Chemistry (Spe-
cial Periodical Reports), Vol. 43; Allen, D. W.; Tebby,
J. C.; Loakes, D., (Eds.); Royal Society of Chemistry:
Cambridge, UK, 2014; pp. 7–9.
[2] Kolla´r, L.; Keglevich, G. Chem Rev 2010, 110, 4257–
4302.
[3] Kere´nyi, A.; Kova´cs, V.; Ko¨rtve´lyesi, T.; Luda´nyi, K.;
Drahos.; Keglevich, G. Heteroatom Chem 2010, 21,
63–70.
H]+
= 263.0980, C18H16P requires: 263.0984.
found
Phenyl-di(p-tolyl)phosphine (4). Based on the ex-
perimental details presented in Table 2 (entry 8),
yield, 92%; colorless oil; 31P NMR (CDCl3) δ: –6.8,
δ (CDCl3) [33]: –6.2; [M + H]+
= 291.1304,
found
C20H20P requires: 291.1297.
´
[4] Keglevich, G.; Bagi, P.; Szo¨llo˝sy, A.; Ko¨rtve´lyesi, T.;
Bis(4-chlorophenyl)-phenylphosphine (6). Based on
the experimental details presented in Table 3 (en-
try 1), yield: 91%; colorless oil; 31P NMR (CDCl3)
δ: –7.4, δ (CDCl3); 13C NMR (CDCl3) δ: 128.8 (J =
8.4, C2’),a 128.9 (J = 7.2, C2),b 129.2 (C4’),c 133.7
(J = 19.8, C3’),a 135.0 (J = 20.3, C3),b 135.1 (C4),c
135.5 (J = 106.0, C1’),d 135.7 (J = 96.0, C1)d, a–d
may be reversed; 1H NMR (CDCl3) δ: 6.90–7.80 (m,
Pongra´cz, P.; Kolla´r, L.; Drahos, L. J Organomet
Chem 2011, 696, 3557–3563.
[5] Bagi, P.; Kova´cs, T.; Szilva´si, T.; Pongra´cz, P.;
Kolla´r, L.; Drahos, L.; Fogassy, E.; Keglevich, G. J
Organomet Chem 2014, 751, 306–313.
[6] Van Kalkeren, H. A.; Blom, A. L.; Rutjes, F. P.
J. T.; Huijbregts, M. A. J. Green Chem 2013, 15,
1255–1263.
[7] O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.;
Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass,
G. A. Angew Chem, Int Ed 2009, 48, 6836–6839.
[8] O’Brien, C. J.; Nixon, Z. S.; Holohan, A. J.; Kunkel, S.
R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne,
F.; Kang, L. J.; Przeworski, K. C. Chem Eur J 2013,
19, 15281–15289.
[9] O’Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A.
J.; Doonan, B. J. Chem Eur J 2013, 19, 5854–5858.
[10] Coyle, E. E.; Doonan, B. J.; Holohan, A. J.; Walsh, K.
A.; Lavigne, F.; Krenske, E. H.; O’Brien, C. J. Angew
Chem, Int Ed, 2014, 53, 12907–12911.
[11] Kosolapoff, G. M., Maier, L. In Organic Phospho-
rus Compounds; Kosolapoff, G. M.; Maier, L., (Eds.);
Wiley-Interscience: New York, 1973; Vol. 6, Ch. 18,
p. 1.
[12] Engel, R. In Handbook of Organophosphorus
Chemistry; Engel, R., (Ed.); Marcel Dekker: New
York, 1992; Ch. 5, p. 193.
[13] Quin L. D. A Guide to Organophosphorus Chemistry;
Wiley: New York, 2000.
ArH); [M + H]+
= 331.0212, C18H14Cl2P re-
found
quires: 331.0205.
Dimethyl-phenylphosphine (8). Based on the exper-
imental details presented in Table 4 (entry 8), yield:
95%; colorless oil; 31P NMR (CDCl3) δ: –43.2, δ
(CDCl3) [34]: –42.4; [M + H]+
= 139.0682,
found
C8H12P requires: 139.0677.
General Procedure for the Deoxygenation of
1-Phenyl-3-methyl-3-phospholene 1-Oxide (9),
and for the Trapping of the Phosphine (10) so
Obtained
A mixture of 0.11 g (0.55 mmol) of 1-phenyl-3-
methyl-3-phospholene 1-oxide (9) and 0.068 mL
(0.55 mmol) of PS or 0.19 mL (1.1 mmol) of TMDS
or 0.042 mL (1.1 mmol) of PMHS was heated under
nitrogen atmosphere at the appropriate temperature
in a glass bomb immersed in an oil bath or in a com-
mercial MW vial in the MW oven for the appropriate
time. Then, the reaction mixture was cooled to room
temperature to afford phosphine 10 that was reacted
further immediately to form the corresponding sul-
fide (11).
To the ꢀ0.55 mmol of the corresponding
phosphine (10) in 2 mL of toluene, 20.7 mg
(0.65 mmol) of powdered sulfur was added under
nitrogen. The mixture was stirred at 26°C overnight
and then evaporated to dryness. Column chromatog-
[14] Keglevich G. Hung Chem J 1998, 53, 385–388.
[15] Rajendran, K. V.; Gilheany, D. G. Chem Comm 2012,
48, 817–819.
[16] Busacca, C. A.; Raju, R.; Grinberg, N.; Haddad, N.;
James-Jones, P.; Lee, H.; Lorenz, J. C.; Saha, A.;
Senanayake, C. H. J Org Chem 2008, 73, 1524–1531.
[17] Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad,
N.; Hrapchak, M.; Latli, B.; Lee, H.; Sabila, P.; Saha,
A.; Sarvestani, M.; Shen, S.; Varsolona, R.; Wei, X.;
Senanayake, C. H. Org Lett 2005, 7, 4277–4280.
[18] Wu, H.-C.; Yu, J.-Q.; Spencer, J. B. Org Lett 2004, 6,
4675–4678.
[19] Fritzsche, H.; Hasserodt, U.; Korte, F. Chem Ber
1964, 97, 1988–1993.
[20] Marsi, K. L. J Org Chem 1974, 39, 265–267.
Heteroatom Chemistry DOI 10.1002/hc