boronic acid, 3 h reaction time and preparative TLC (heptane–
EtOAc 1 : 1), 63% of 15 was obtained as yellow crystals,
mp 153–154 ЊC (heptane–EtOAc), Rf (heptane–EtOAc, 2 : 1)
0.64. δH (CDCl3) 8.73 (s, 1H), 8.71 (t, J = 1.8 Hz, 1H), 8.40 (ddd,
J = 8.3, 2.3, 1.1 Hz, 1H), 8.20–8.16 (m, 2H), 8.09–8.05 (m, 1H),
7.77 (t, J = 8.2 Hz, 1H), 7.63 (dt, J = 8.3, 1.5 Hz, 1H), 7.52 (dt,
J = 8.3, 1.4 Hz, 1H), 7.42–7.30 (m, 5H), 5.55 (s, 2H). δC (CDCl3)
148.60, 143.29, 137.93, 136.04, 135.48, 135.28, 133.25, 130.81,
130.13, 130.08, 130.00, 129.89, 129.05, 128.15, 127.45, 124.55,
123.70, 122.14, 121.35, 116.78, 81.50.¶¶
126.97, 121.96, 121.85, 105.68, 80.86, 80.69, four carbon signals
consisted of overlapping peaks.¶¶
1-Benzyloxy-3-(2-trimethylsilylethynyl)-1H-pyrazolo[4,3-c]-
isoquinoline (20). Compound 8 (10.0 mg, 0.025 mmol) and
ethynyl(trimethyl)silane (3.5 mg, 0.035 mmol) were dissolved in
3 mL of dry Et3N under N2. After three cycles of evacuation
and re-filling with N2, copper iodide (0.4 mg, 0.002 mmol) and
Pd(PPh3)2Cl2 (0.7 mg, 0.001 mmol) were added. The reaction
was stirred at 55 ЊC for 3 h, before cooling to rt and aqueous
work up as described for the Suzuki couplings followed by
preparative TLC (heptane–EtOAc 1 : 1) gave 7.2 mg (77%) of
20 as yellow crystals, mp 134–137 ЊC (heptane–EtOAc). Rf
(heptane–EtOAc, 2 : 1) 0.44. δH (CDCl3) 9.05 (s, 1H), 8.43 (d,
J = 8.1 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.85–7.27 (m, 7H),
5.55 (s, 2H), 0.39 (s, 9H).¶¶
3-Benzyloxy-1-(4-methylphenyl)-3H-pyrazolo[3,4-c]isoquinol-
ine (16). Similarly, 11 and p-tolylboronic acid after 6 h reaction
time and preparative TLC (heptane–EtOAc 1 : 1) afforded 86%
of 16 as yellow crystals, mp 147–148 ЊC (heptane–EtOAc),
Rf (heptane–EtOAc, 2 : 1) 0.33. δH (CDCl3) 9.04 (s, 1H), 8.24
(d, J = 8.1 Hz, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.73–7.30 (m,
11H), 5.58 (s, 2H), 2.48 (s, 3H). δC (CDCl3) 154.37, 142.20,
139.21, 138.60, 133.94, 131.71, 131.20, 130.96, 129.92, 129.62,
129.47, 129.34, 129.14, 128.53, 125.68, 125.40, 122.43, 104.88,
80.96, 21.31.¶¶
Acknowledgements
This work was supported by Corporate Research Affairs at
Novo Nordisk A/S, The Graduate School of Drug Research
at The Royal Danish School of Pharmacy (J. P.) and the
Lundbeck Foundation Copenhagen (J. R. G.).
3-Benzyloxy-1-(3-thienyl)-3H-pyrazolo[3,4-c]isoquinoline
(17). In the same way, 11 and 3-thienylboronic acid after 2 h
reaction time and preparative TLC (heptane–EtOAc 6 : 1) gave
77% of 17 as off-white crystals, mp 117–119 ЊC (heptane–
EtOAc), Rf (heptane–EtOAc, 2 : 1) 0.28. δH (CDCl3) 9.05
(s, 1H), 8.29 (d, J = 8.3 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.73–
7.30 (m, 10H), 5.58 (s, 2H). δC (CDCl3) 154.48, 142.06, 134.60,
134.46, 133.86, 131.91, 130.85, 129.91, 129.67, 129.18, 128.60,
128.55, 126.25, 125.72, 125.50, 125.00, 122.39, 105.27, 81.05.¶¶
References
1 J. Pawlas, P. Vedsø, P. Jakobsen, P. O. Huusfeldt and M. Begtrup,
J. Org. Chem., in the press.
2 L. Cecchi, V. Colotta, F. Melani, G. Palazzino, G. Filacchioni,
C. Martini, G. Giannaccini and A. Lucacchini, J. Pharm. Sci., 1989,
78, 437.
3 D. Sicker, J. Heterocycl. Chem., 1992, 29, 275.
4 J. Skotnicki, S. C. Gilman, B. A. Steinbaugh and J. H. Musser,
USP 4 748 246/1988 (Chem. Abstr., 1988, 109, 110425u).
5 A. A. Hassan, R. Mekheimer and N. K. Mohamed, Pharmazie,
1997, 8, 589.
1-Benzyloxy-3-(4-methylphenyl)-1H-pyrazolo[4,3-c]isoquin-
oline (18). Similarly, 12 and p-tolylboronic acid (15.4 mg, 0.11
mmol) using a reaction time of 6 h and preparative TLC
(heptane–EtOAc 1 : 1) afforded 94% of 18 as off-white crystals,
mp 211–212 ЊC (heptane–EtOAc), Rf (heptane–EtOAc, 2 : 1)
0.43. δH (CDCl3) 9.03 (s, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.42 (d,
J = 8.2 Hz, 2H), 8.09 (d, J = 8.0 Hz, 1H), 7.79 (dt, J = 8.1, 1.4
Hz, 1H), 7.68 (dt, J = 7.5, 1.3 Hz, 1H), 7.52–7.30 (m, 7H), 5.57
(s, 2H), 2.45 (s, 3H). δC (CDCl3) 143.08, 140.70, 138.83, 135.99,
133.55, 130.38, 130.05, 129.83, 129.80, 129.48, 129.44, 128.89,
127.61, 127.14, 126.80, 122.71, 122.04, 116.70, 81.18, 21.46.
Found: C, 78.85; H, 5.3; N, 11.5. C24H19N3O requires C, 78.9;
H, 5.25; N, 11.5%.
6 R. Mekheimer, Pharmazie, 1994, 49, 486.
7 S. A. Katner, USP 3 890 324/1975 (Chem. Abstr., 1975, 83, 164169b).
8 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397.
9 P. Vedsø and M. Begtrup, J. Org. Chem., 1995, 60, 4995.
10 J. Felding, J. Kristensen, T. Bjerregaard, L. Sander, P. Vedsø and
M. Begtrup, J. Org. Chem., 1999, 64, 4196.
11 V. K. Chaikovski, T. S. Kharlova, V. D. Filiminov and T. A.
Saryucheva, Synthesis, 1999, 748.
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone,
M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S.
Replogle and J. A. Pople, Gaussian 98 Revision A.7, Gaussian, Inc.,
Pittsburgh, PA, 1998.
13 (a) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971,
54, 724; (b) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys.,
1972, 56, 2257; (c) P. C. Hariharan and J. A. Pople, Mol. Phys.,
1974, 27, 209; (d) M. S. Gordon, Chem. Phys. Lett., 1980, 76, 163;
(e) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta., 1973, 28, 213;
( f ) W. J. Hehre, Practical Strategies for Electronic Structure
Calculations, Wavefunction, Irvine, California, USA, 1995.
14 SPARTAN 5.1, Wavefunction, Inc., 18401 Von Karman Ave.,
Ste. 370, Irvine, CA 92612 USA.
1-Benzyloxy-3-(1-benzyloxypyrazol-5-yl)-1H-pyrazolo[4,3-c]-
isoquinoline (19). To a solution of 1-benzyloxypyrazole (25 mg,
0.14 mmol) in THF (2 mL) at –78 ЊC under N2, was added a
solution of n-BuLi in hexanes (0.085 mL, 2.0 M), and after
5 min at –78 ЊC a solution of ZnCl2 in THF (0.22 mL, 1.0 M)
was added. The solution was allowed to warm to rt, stirred at
rt for an additional 30 min, before 8 (88 mg, 0.22 mmol) and
Pd(PPh3)4 (3 mg, 0.0029 mmol) in DMF (4 mL) was added, the
reaction was heated to 80 ЊC for 1 h, cooled to rt and quenched
with sat. aq. NH4Cl (10 mL). Addition of H2O (10 mL), extrac-
tion with Et2O (3 × 15 mL), drying (MgSO4), evaporation in
vacuo, and preparative TLC (eluent ethyl acetate–heptane, 2 : 1)
afforded 42 mg (63%) of 19 as yellow crystals, mp 174–175 ЊC
(heptane–EtOAc). Rf (heptane–EtOAc, 2 : 1) 0.34. δH (CDCl3)
9.04 (s, 1H), 8.51 (d, J = 8.2 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H),
7.82 (dt, J = 7.5, 1.1 Hz, 1H), 7.72 (dt, J = 7.5, 1.1 Hz, 1H),
7.61–7.55 (m, 2H), 7.46 (d, J = 2.3 Hz, 1H), 7.50–7.40 (m, 2H),
7.36–7.20 (m, 8H), 7.18 (d, J = 2.3 Hz, 1H), 5.55 (s, 2H), 5.54
(s, 2H). δC (CDCl3) 150.49, 134.13, 133.36, 133.09, 131.14,
129.91, 129.81, 129.55, 128.85, 128.81, 128.34, 127.91, 127.32,
15 Nitrogen-containing heterocycles were prepared in this manner:
A. S. B. Prasad, T. M. Stevenson, J. R. Citineni, V. Nyzam and
P. Knochel, Tetrahedron, 1997, 53, 7237.
16 F. Diederich and P. J. Stang, Metal-catalyzed Cross-Coupling
Reactions, Wiley-VCH, New York, 1998.
17 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
18 A. Suzuki, J. Organomet. Chem., 1999, 576, 147.
19 E. I. Negishi, A. O. King and N. Okukado, J. Org. Chem., 1977, 42,
1821.
20 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975,
4467.
¶¶ The compound was unstable and a correct microanalysis could
not be obtained. When dissolved in CDCl3 NMR signals from benz-
aldehyde emerged upon standing. A clean 1H-NMR spectrum of the
freshly prepared compounds is included in the supplementary material.
21 D. R. Coulson, Inorg. Synth., 1972, 13, 121.
866
J. Chem. Soc., Perkin Trans. 1, 2001, 861–866