class of compounds has been also established. The computational
study indicates that these compounds might act through PBPs as
that of styrylquinazolone antibiotics.
Acknowledgments
The author DK thanks CSIR, New Delhi for the awards of Research
Associate fellowship and MDV thanks UGC-RGNF, New Delhi for
Junior Research Fellowship.
References and notes
1.
2.
3.
Zumla, A.; Nahid, P.; Cole, S. T. Nat. Rev. Drug Disc. 2013, 12,
388.
WHO declares tuberculosis a global emergency [press release].
Geneva: World Health Organization. Apr 23, 1993; WHO/31.
Global Tuberculosis Report 2014, World Health Organization,
Geneva,
2014.
_eng.pdf?ua=1 (Accessed on Apr 30, 2015)
4.
Hosford, J. D.; von Fricken, M. E.; Lauzardo, M.; Changd, M.;
Dai, Y.; Lyon, J. A.; Shuster, J.; Fennelly, K. Tuberculosis 2015,
95, 112.
5.
6.
Pepper, D. J.; Meintjes, G. A.; Mcilleron, H.; Wilkinson, R. J.
Drug. Discovery Today 2007, 12, 980.
FDA
news
release.
/ucm333695.html (accessed on Dec 12, 2014).
7.
European
Medicines
Agency.
uman/medicines/002614/human_med_001730.jsp (accessed on
Apr 30, 2015)
8.
9.
Gandhi, N. R.; Nunn, P.; Dheda, K.; Schaaf, H. S.; Zignol, M.;
van Soolingen, D.; Jensen, P.; Bayona, J. Lancet 2010, 375, 1830.
Ginsberg, A. M. Tuberculosis 2010, 90, 162-167.
Figure 12.(a) Sequence alignment of Mtb PBPa (3UPN) with template S.
aureus PBP2a (1VQQ). Red boxes indicate active site residues among PBP
proteins. Colors indicate amino acids with their similar characteristics, stars
identical amino acids, colons similar amino acids, single dots almost similar
amino acids.17,18
10. Shah, P.; Dhameliya, T. M.; Bansal, R.; Nautiyal, M.; Kommi, D.
N. ; Jadhavar, P. S.; Sridevi, J. P.; Yogeeswari, P.; Sriram, D.;
Chakraborti, A. K. Med. Chem. Commun. 2014, 5, 1489.
11. Ananthan, S.; Faaleolea, E. R.; Goldman, R. C.; Hobrath, J. V.;
Kwon, C. D.; Laughon, B. E.; Maddry, J. A.; Mehta, A.;
Rasmussen, L.; Reynolds, R. C.; Secrist III, J. A.; Shindo, N.;
Showe, D. N.; Sosa, M. I.; Sulinga, W. J.; White, E. L.
Tuberculosis 2009, 89, 334.
12. Bouley, R.; Kumarasiri, M.; Peng, Z.; Otero, L. H.; Song, W.;
Suckow, M. A.; Schroeder, V. A.; Wolter, W. R.; Lastochkin, E.;
Antunes, N. T.; Pi, H.; Vakulenko, S.; Hermoso, J. A.; Chang, M.;
Mobashery, S. J. Am. Chem. Soc. 2015, 137, 1738.
13. Kumar, D.; Jadhavar, P. S.; Nautiyal, M.; Sharma, H.; Meena, P.
K.; Adane, L.; Pancholia, S.; Chakraborti, A. K. RSC Adv. 2015,
5, 30819.
14. National Committee for Clinical Laboratory Standards,
Antimycobacterial susceptibility testing for Mycobacterium
tuberculosis, tentative standard M24-T, Wayne, PA, NCCLS,
1995.
15. Macheboeuf, P.; Contreras-Martel, C.; Job, V.; Dideberg, O.;
Dessen, A. FEMS Microbiol Rev. 2006, 30, 673.
16. Fedarovich, A.; Nicholas, R. A.; Davies, C. J. Mol. Biol. 2012,
418, 316.
17. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.;
McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.;
Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson T. J.; Higgins, D.
G. Bioinformatics 2007, 23, 2947.
18. Kumar, V.; Saravanan, P.; Arvind, A.; Mohan, C. G. J. Mol.
Model. 2011, 17, 939.
Figure 13. The docking pose of styrylquinazolone antibiotic in PBPa active
site. Figure is generated and rendered using PyMOL.
19. Lim, D.; Strynadka, N. C. J. Nature Struct. Biol.2002, 9, 870-876.
20. (a) Chakraborti, A. K.; Thilagavathi, R. Bioorg. Med. Chem. 2003,
11, 3989. (b) Chakraborti, A. K.; Gopalakrishnan, B.; Sobhia M.
E.; Malde, A. Bioorg. Med. Chem. Lett. 2003, 13, 2473. (c)
Chakraborti, A. K.; Gopalakrishnan, B.; Sobhia, M. E.; Malde, A.
Bioorg. Med. Chem. Lett. 2003, 13, 1403. (d) Bhagat, S.; Shah, P.;
Garg, S. K.; Mishra, S.; Kaur, P. K.; Singh S.; Chakraborti, A. K.
Med. Chem. Commun. 2014, 5, 665. (e) Seth, K.; Garg, S. K.;
Kumar, R.; Purohit, P.; Meena, V. S.; Goyal, R.; Banerjee, U. C.;
Chakraborti, A. K. ACS Med. Chem. Lett. 2014, 5, 512. (f) For
review please see Zhang, L.; Tsai, K. C.; Du, L.; Li, H.; Fang M.;
Xu, W. Curr. Med. Chem. 2011, 18, 923.
The present work reveals new 2-styrylquinazolones with
potent anti-Mtb activity. Forty-six compounds were synthesized
using one pot reaction of isatoic anhydride, amine and triethyl
orthoacetate followed by treatment of aromatic aldehyde. These
were evaluated for in vitro anti-Mtb activity. Twenty-six
compounds displayed good in vitro anti-mycobacterial activity
ranging from 0.40-6.25 µg/mL. The most potent compounds 8c,
8d, 8ab (MIC, 0.78 µg/mL) and 8ar (MIC,0.40 µg/mL) were
highly selective with therapeutic index >64 and >125
respectively. These compounds have shown potency better than
that of the standard drugs E, Z and Cfx. The early SAR for this