10.1002/cctc.201900456
ChemCatChem
FULL PAPER
[23] Traces of 10 are difficult to detect by NMR due to signal overlap, but its
presence in such mixtures was proven by TLC and GC-MS.
[24] M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49–92.
[25] B. M. Trost, J. T. Masters, Chem. Soc. Rev. 2016, 45, 2212–2238.
[26] Lewis acid catalyzed alkyne hydrations in hot acetic acid have been
reported (e.g., refs.[8c,e,f]). They may proceed through non-metal-specific
additions of acetic acid to alkyne. It is of note that formic acid hydrates
alkynes often cleanly at 100 °C: N. Menashe, D. Reshef, Y. Shvo, J.
Org. Chem. 1991, 56, 2912–2914.
b) R.M. Fairchild, K.T. Holman, Organometallics 2008, 27, 1823–1833;
c) E. V. Mutseneck, D. A. Loginov, D.S. Perekalin, Z. A. Starikova, D. G.
Golovanov, P. V. Petrovskii, P. Zanello, M. Corsini, F. Laschi, A. R.
Kudinov, Organometallics 2004, 23, 5944–5957.
[50] a) A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, L.
Korsakoff, J. Org. Chem. 1967, 32, 476–476; b) D. F. Marsh, R. E.
Falvo, L. M. Mink, J. Chem. Educ. 1999, 76, 237–237; c) P. Rothemund,
J. Am. Chem. Soc. 1936, 58, 625–627.
[51] J. F. Larrow, E. N. Jacobsen, Org. Synth. 1998, 75, 1.
[52] a) B. R. James, G. L. Rempel, J. Am. Chem. Soc. 1969, 91, 863–865;
b) J. Blum, H. Huminer, H. Alper, J. Mol. Catal. 1992, 75, 153–160.
[53] a) D. B. Grotjahn, X. Zeng, A. L. Cooksy, W. S. Kassel, A. G.
DiPasquale, L. N. Zakharov, A. L. Rheingold, Organometallics 2007, 26,
3385–3402; b) M. J. Cowley, J. M. Lynam, J. M. Slattery, Dalton Trans.
2008, 34, 4552–4552; c) A. Höhn, H. Werner, J. Organomet. Chem.
1990, 382, 255–272; and cited literature.
[27] T. Suzuki, M. Tokunaga, Y. Wakatsuki, Org. Lett. 2001, 3, 735–737.
[28] C. Bianchini, J. A. Casares, M. Peruzzini, A. Romerosa, F. Zanobini, J.
Am. Chem. Soc. 1996, 118, 4585–4594.
[29] L. Hintermann, L. Xiao, A. Labonne, U. Englert, Organometallics 2009,
28, 5739–5748.
[30] F. Boeck, T. Kribber, L. Xiao, L. Hintermann, J. Am. Chem. Soc. 2011,
133, 8138–8141.
[31] L. Li, M. Zeng, S. B. Herzon, Angew. Chem. Int. Ed. 2014, 53, 7892–
7895; Angew. Chem. 2014, 126, 8026–8029.
[54] K.-S. Joo, S. Y. Kim, C. S. Chin, Bull. Korean Chem. Soc. 1997, 18,
1296–1301.
[32] Y. Fukuda, K. Utimoto, J. Org. Chem. 1991, 56, 3729–3731.
[33] a) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed. 1998, 37,
1415–1418; Angew. Chem. 1998, 110, 1475–1478; b) E. Mizushima, K.
Sato, T. Hayashi, M. Tanaka, Angew. Chem. Int. Ed. 2002, 41, 4563–
4565; Angew. Chem. 2002, 114, 4745–4747.
[55] M. Angoy, M. V. Jiménez, F. J. Modrego, L. A. Oro, V. Passarelli, J. J.
Pérez-Torrente, Organometallics 2018, 37, 2778–2794.
[56] J. Ott, L. M. Venanzi, C. A. Ghilardi, S. Midollini, A. Orlandini, J.
Organomet. Chem. 1985, 291, 89–100.
[57] T. Hirabayashi, Y. Okimoto, A. Saito, M. Morita, S. Sakaguchi, Y. Ishii,
Tetrahedron 2006, 62, 2231–2234.
[34] A. Leyva, A. Corma, J. Org. Chem. 2009, 74, 2067–2074.
[35] Microwave-heated samples occasionally break, which would release
toxic mercury vapours and might contaminate the apparatus.
[36] a) M. B. T. Thuong, A. Mann, A. Wagner, Chem. Commun. 2012, 48,
434–436; b) R. Das, D. Chakraborty, Appl. Organomet. Chem. 2012, 26,
722–726; c) Z.-W. Chen, D.-N. Ye, Y.-P. Qian, M. Ye, L.-X. Liu,
Tetrahedron 2013, 69, 6116–6120.
[58] a) N. Saragas, G. Floros, P. Paraskevopoulou, N. Psaroudakis, S.
Koinis, M. Pitsikalis, K. Mertis, J. Mol. Catal. A: Chem. 2009, 303, 124–
131; b) K. Yokota, M. Ohtubo, T. Hirabayashi, Y. Inai, Polym. J. 1993,
25, 1079–1086; c) A. Petit, S. Moulay, T. Aouak, Eur. Polym. J. 1999,
35, 953–963.
[59] a) N. Riache, A. Dery, E. Callens, A. Poater, M. Samantaray, R. Dey, J.
Hong, K. Li, L. Cavallo, J.-M. Basset, Organometallics 2015, 34, 690–
695; b) E. Farnetti, S. Filipuzzi, Inorg. Chim. Acta 2010, 363, 467–473;
c) V. Cadierno, S. E. García-Garrido, J. Gimeno, J. Am. Chem. Soc.
2006, 128, 15094–15095; d) K. Tanaka, K. Toyoda, A. Wada, K.
Shirasaka, M. Hirano, Chem. Eur. J. 2005, 11, 1145–1156; e) R.
Nomura, J. Tabei, T. Masuda, Macromolecules 2002, 35, 2955–2961; f)
M. Marigo, N. Marsich, E. Farnetti, J. Mol. Catal. A: Chem. 2002, 187,
169–177; g) M. Tabata, T. Sone, Y. Sadahiro, Macromol. Chem. Phys.
1999, 200, 265–282; h) K. Yokota, M. Ohtubo, T. Hirabayashi, Y. Inai,
Polym. J. 1993, 25, 1079–1086.
[37] Camphorsulfonic acid was chosen as standard acidic additive for the
screen because of its availability and ease of handling. It is non-
hygroscopic and easy to weigh out on a balance.
[38] W.-J. Liu, J.-H. Li, Chin. J. Org. Chem. 2006, 26, 1073–1078.
[39] J. Yadav, S. K. Das, S. Sarkar, J. Am. Chem. Soc. 1997, 119, 4315–
4316.
[40] a) H. Sakurai, T. Fujii, K. Sakamoto, Chem. Lett. 1992, 21, 339–342; b)
P. M. Treichel in Comprehensive Organometallic Chemistry II, Vol. 6
(Eds. E W. Abel, F. G. A. Stone, G. Wilkinson), Elsevier, 1995, pp 109–
118; c) D. A. Valyaev, M. G. Peterleitner, L. I. Leont’eva, L. N. Novikova,
O. V. Semeikin, V. N. Khrustalev, M. Y. Antipin, N. A. Ustynyuk, B. W.
Skelton, A. H. White, Organometallics 2003, 22, 5491–5497.
[41] a) M. O. Albers, N. J. Coville, Coord. Chem. Rev. 1984, 53, 227–259;
T.-Y. Luh, Coord. Chem. Rev. 1984, 60, 255–276.
[60] Attempts to hydrate 2-methyl-2-butyn-2-ol with PdCl2 or Pd(OAc)2 gave
"higher-molecular-weight material": I. K. Meier, J. A. Marsella, J. Mol.
Catal. 1993, 78, 31–42.
[61] C. Xu, W. Du, Y. Zeng, B. Dai, H. Guo, Org. Lett. 2014, 16, 948–951.
[62] T. Kusakabe, Y. Ito, M. Kamimura, T. Shirai, K. Takahashi, T. Mochida,
K. Kato, Asian J. Org. Chem. 2017, 6, 1086–1090.
[42] a) X.-F. Wu, D. Bezier, C. Darcel, Adv. Synth. Catal. 2009, 351, 367–
370; b) J. R. Cabrero-Antonino, A. Leyva-Pérez, A. Corma, Chem. Eur.
J. 2012, 18, 11107–11114; c) J. Park, J. Yeon, P. H. Lee, K. Lee,
Tetrahedron Lett. 2013, 54, 4414–4417; d) G. Velegraki, M. Stratakis, J.
Org. Chem. 2013, 78, 8880–8884.
[63] For the ligand used (dimenthylphosphine oxide) see: S. Koller, J.
Gatzka, K. M. Wong, P. J. Altmann, A. Pöthig, L. Hintermann, J. Org.
Chem. 2018, 83, 15009–15028.
[43] A. Bauer, U. Englert, S. Geyser, F. Podewils, A. Salzer,
Organometallics 2000, 19, 5471–5476.
[64] a) W. Hiscox, P. W. Jennings, Organometallics 1990, 9, 1997–1999; b)
P. W. Jennings, J. W. Hartman, W. C. Hiscox, Inorg. Chim. Acta 1994,
222, 317–322, c) J. W. Hartman, W. C. Hiscox, P. W. Jennings, J. Org.
Chem. 1993, 58, 7613–7614.
[44] D. B. Grotjahn, D. A. Lev, J. Am. Chem. Soc. 2004, 126, 12232–12233.
[45] M. Tokunaga, T. Suzuki, N. Koga, T. Fukushima, A. Horiuchi, Y.
Wakatsuki, J. Am. Chem. Soc. 2011, 123, 11917–11924.
[65] A. Scarso, M. Colladon, P. Sgarbossa, C. Santo, R. A. Michelin, G.
Strukul, Organometallics 2010, 29, 1487–1497.
[46] The qNMR analysis does not differentiate 7a/b, but we have
independently studied the reaction of CpRuCl(PPh3)2 with 1 and water
in the course of another project, where 7b was unequivocally
ascertained as major organic decomposition product. M. Schreyer, Ph.
D. Thesis, TU Munich, 2018.
[66] Ambifunctionality of SPO-liands: a) T. Ghaffar, A. W. Parkins,
Tetrahedron Lett. 1995, 36, 8657–8660; b) T. J. Ahmed, S. M. M.
Knapp, D. R. Tyler, Coord. Chem. Rev. 2011, 255, 949–974.
[67] It is not clear if ligand Men2POH coordinates to gold under such
conditions; steric hindrance to complexation was noted with Cy2POH
and ruthenium precursors: E. Tomás-Mendivil, J. Francos, R.
González-Fernández, P. J. González-Liste, J. Borge, V. Cadierno,
Dalton Trans. 2016, 45, 13590–13603.
[47] T. Suzuki, Y. Wakatsuki, M. Tokunaga, Japanese Patent 2002114730
A2, 2002.
[48] L. Hintermann, T. Kribber, A. Labonne, E. Paciok, Synlett 2009, 2412–
2416.
[49] a) A. I. Konovalov, E. E. Karslyan, D. S. Perekalin, Y. V. Nelyubina, P.
V. Petrovskii, A. R. Kudinov, Mendeleev Commun. 2011, 21, 163–164;
This article is protected by copyright. All rights reserved.