ORGANIC
LETTERS
2004
Vol. 6, No. 26
4877-4879
Dimethylsilyl Ketene Acetal as a
Nucleophile in Asymmetric Michael
Reaction: Enhanced Enantioselectivity
in Oxazaborolidinone-Catalyzed Reaction
Toshiro Harada,* Shinya Adachi, and Xiaowei Wang
Department of Chemistry and Materials Technology, Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
Received September 22, 2004
ABSTRACT
+
Dimethylsilanyl [Me2Si(H)] ketene S,O-acetal 6b is an effective nucleophile that retards the undesirable Si -catalyzed racemic pathway in the
+
oxazaborolidinone-catalyzed asymmetric Michael reaction. Through the further suppression of the Si -catalyzed pathway by carrying out the
reaction in the presence of 2,6-diisopropylphenol and t-BuOMe as additives, enantioselectivity up to 98% ee could be achieved for a variety
of acyclic enones.
The Michael reaction is one of the fundamental methods used
for constructing 1,5-dicarbonyl skeletons in organic synthesis.
Recently, catalytic asymmetric versions of this reaction have
received extensive attention in this regard,1 and major
progress has been made in effecting asymmetric Michael
reactions using enolate anions generated in situ.2,3 A limita-
tion of this approach, however, is the fact that the process is
often limited to nucleophilic partners that readily enolize,
such as active methylene compounds and nitromethane. For
the much less acidic ketone and carboxylic acid derived
nucleophiles, alternative approaches must be used that exploit
silyl enolates as the active nucleophiles in the presence of
chiral Lewis acids. Indeed, the Mukaiyama-Michael reaction
is now of major synthetic importance.4,5
(4) (a) Kobayashi, S.; Suda, S.; Yamada, M.; Mukaiyama, T. Chem. Lett.
1994, 97. (b) Bernardi, A.; Colombo, G.; Scolastico, C. Tetrahedron Lett.
1996, 37, 8921. (c) Bernardi, A.; Karamfilova, K.; Sanguinetti, S.;
Scolastico, C. Tetrahedron 1997, 53, 13009. (d) Kitajima, H.; Ito, K.;
Katsuki, T. Tetrahedron 1997, 53, 17015. (e) Kitajima, H.; Katsuki, T.
Synlett 1997, 568. (f) Nishikori, H.; Ito, K.; Katsuki, T. Tetrahedron:
Asymmetry 1998, 9, 1165. (g) Evans, D. A.; Rovis, T.; Kozlowski, M. C.;
Tedrow, J. S. J. Am. Chem. Soc. 1999, 121, 1994. (h) Evans, D. A.; Willis,
M. C.; Johnston, J. N. Org. Lett. 1999, 1, 865. (i) Evans, D. A.; Johnston,
J. S.; Olhava, E. J. J. Am. Chem. Soc. 2000, 122, 1635. (j) Evans, D. A.;
Rovis, T.; Kozlowski, M. C.; Downey, C. W.; Tedrow, J. S. J. Am. Chem.
Soc. 2000, 122, 9134. (k) Evans, D. A.; Scheidt, K. A.; Johnston, J. N.;
Willis, M. C. J. Am. Chem. Soc. 2001, 123, 4480. (l) Zhang, F.-Y.; Corey,
E. J. Org. Lett. 2001, 3, 639. (m) Desimoni, G.; Faita, G.; Filippone, S.;
Mella, M.; Zampori, M. G.; Zema, M. Tetrahedron 2001, 57, 10203.
(5) (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 124,
4370. (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
1172. (c) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
7894. (d) Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2003, 125, 1192.
(1) Review: (a) Tomioka, K.; Nagaoka, Y. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin,
1999; Vol. 3, Chapter 31.1. (b) Kanai, M.; Shibasaki, M. In Catalytic
Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley: New York, 2000; p
569. (c) Sibi, M.; Manyem, S. Tetrahedron 2000, 56, 8033. (d) Krause, N.;
Hoffmann-Ro¨der, A. Synthesis 2001, 171.
(2) For leading references, see: (a) Yamaguchi, M.; Shiraishi, T.; Hirama,
M. J. Org. Chem. 1996, 61, 3520. (b) Harada, S.; Kumagai, N.; Kinoshita,
T.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 2582. (c)
Itoh, K.; Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394.
(3) (a) Sawamura, H.; Hamashima, H.; Ito, Y. J. Am. Chem. Soc. 1992,
114, 8295. (b) Yamaguchi, M.; Shiraishi, T.; Hirama, M. Angew. Chem.,
Int. Ed. Engl. 1993, 32, 1176. (c) Sasai, H.; Arai, T.; Shibasaki, M. J. Am.
Chem. Soc. 1994, 116, 1571.
10.1021/ol048071g CCC: $27.50
© 2004 American Chemical Society
Published on Web 12/02/2004