Brand, A. J. Berresheim, L. Przybilla, H. J. Rader and K. Mullen,
¨
Chem. Eur. J, 2002, 8, 1424
and the reaction mixture was extracted with CH2Cl2 (3 ꢃ 5
mL). The organic phase was dried over anhydrous MgSO4
and concentrated in vacuo. The residue was subjected to col-
umn chromatography on silica gel to give 18 (40 mg, 55%)
as colorless needles: IR (KBr) n 3064, 2992, 2920, 1610,
11 (a) For commentary on the deoxygenation of thiophene S-oxides,
see: ref. 1a and K. Kumazoe, K. Arima, S. Mataka, D. Walton
and T. Thiemann, J. Chem. Res., 2003, (S) 60; (M) 248; (b) For
photochemical deoxygenation at lower temperatures, see: K.
Arima, D. Ohira, S. Mataka and T. Thiemann, submitted to
Photochem. Photobiol. Sci.
12 (a) P. Pouzet, I. Erdelmeier, D. Ginderow, J.-P. Mornon, P. M.
Dansette and D. Mansuy, J. Heterocycl. Chem., 1997, 34, 1567;
(b) Also, calculations have predicted the non-planarity of thio-
phene S-oxides: J. A. Hashmall, V. Horak, L. E. Khoo, C. O.
Quicksall and M. K. Sun, J. Am. Chem. Soc., 1981, 103, 289;
(c) J. S. Amato, S. Karady, R. A. Reamer, H. B. Schlegel, J. P.
Springer and L. M. Weinstock, J. Am. Chem. Soc., 1982, 104,
1375; (d ) I. Rojas, J. Phys. Org. Chem., 1992, 5, 74.
1
1513, 1286, 1035, 759 cmꢂ1; H NMR (270 MHz, CDCl3) d
2.43 (s, 6H, 2 CH3), 3.75 (s, 6H, 2 OCH3), 6.70 (d, 2H, 3J
3
8.7 Hz), 6.87 (d, 2H, J 8.7 Hz), 7.56 (m, 2H), 8.12 (m, 2H)
13C NMR (67.8 MHz, CDCl3 , DEPT 90, DEPT 135)* d
16.87 (2C, 2 CH3), 55.07 (2C, 2 OCH3), 125.01 (2C, CH),
125.62 (2C, CH), 129.77 (2C, Cquat), 131.37 (4C, CH), 132.02
(2C, Cquat), 134.30 (2C, Cquat), 139.44 (2C, Cquat), 157.52
(2C, Cquat) MS (70 eV) m/z (%) 368 (M+, 100). HRMS Found:
368.1779. Calcd. for C26H24O2 : 368.1776 (M+).
13 J. C. Barnes, W. M. Horspool and F. I. Mackie, Acta Crystallogr.,
Sect. C, 1991, 164.
14 (a) For a review on dibenzothiophene S-oxides, see: T. Thiemann,
K. Arima and S. Mataka, Rep. Inst. Adv. Mat. Study Kyushu
Univ., 2000, 14(1), 37–45; Chem. Abstr., 2001, 134, 173 925u; (b)
for a review on benzothiophene S-oxides, see: T. Thiemann, K.
Arima, K. Kumazoe and S. Mataka, Rep. Inst. Adv. Mat. Study
Kyushu Univ., 2000, 14(2), 139–148; Chem. Abstr., 2001, 326,
134 318a.
References
1
(a) For a recent review on thiophene S-oxides, see: T. Thiemann and
K. Gopal Dongol, J. Chem. Res. (S), 2002, 303.; (b) See also :
J. Nakayama, Bull Chem. Soc. Jpn., 2000, 73, 1; (c) J.
Nakayama and Y. Sugihara, Sulfur Rep., 1997, 19, 349.
2
(a) M. Prochazka, Collect. Czech Chem. Commun., 1965, 30, 1158;
(b) W. Davies, N. Gamble, F. C. James and W. Savige, Chem. Ind.
(London), 1952, 804; (c) J. Melles and H. J. Backer, Recl. Trav.
Chim. Pays-Bas, 1953, 72, 491; (d ) W. Davies and F. C. James,
J. Chem. Soc., 1954, 15; (e) K. Okita and S. Kambara, Kogyo
Kagaku Zasshi, 1956, 59, 547; ( f ) W. J. M. van Tilborg, Synth.
Commun., 1976, 6, 583; (g) R. E. Merrill and G. Sherwood,
J. Heterocycl. Chem., 1977, 14, 1251.
15 2-Methylbenzothiophene S-oxide (8) is a known material which
had been synthesized previously from the corresponding
benzothiophene by oxidation with p-nitroperoxybenzoic acid:
´
P. Geneste, J. Grimaud, J. L. Olive and S. N. Ung, Bull. Soc.
Chim. Fr., 1977, 271.
16 D. W. Jones, J. Chem. Soc., Perkin Trans. 1, 1979, 673.
17 S. Weeralungo, M. Austrup and R. Rodrigo, J. Chem. Soc.,
Perkin Trans. 1, 1988, 3169.
3
(a) K. Torssell, Acta Chem. Scand. (Ser. B), 1976, 353; (b) A. M.
Naperstkow, J. B. Macaulay, M. J. Newlands and A. G. Fallis,
Tetrahedron Lett., 1989, 30, 5077; (c) Y.-Q. Li, T. Thiemann, T.
Sawada and M. Tashiro, J. Chem. Soc., Perkin Trans., 1994, 1,
2323; (d ) C. Thiemann, T. Thiemann, Y.-Q. Li, T. Sawada, Y.
Nagano and M. Tashiro, Bull. Chem. Soc. Jpn., 1994, 67, 1886;
(e) T. Thiemann, Y.-Q. Li, S. Mataka and M. Tashiro, J. Chem.
Res. (S), 1995, 384; (M) 1995, 2364; ( f ) T. Thiemann, M. L.
18 (a) A. S. Cieplak, J. Am. Chem. Soc., 1981, 103, 4540; (b) A. S.
Cieplak, B. D. Tait and C. R. Johnson, J. Am. Chem. Soc.,
1989, 111, 8447; (c) for a review, see: A. S. Cieplak, Chem. Rev.,
1999, 99, 1265.
19 (a) N. F. Werstiuk and J. Ma, Can. J. Chem., 1994, 72, 2493; (b)
B. S. Jursic, J. Heterocycl. Chem., 1995, 32, 1445; (c) B. S. Jursic,
J. Mol. Struct. (THEOCHEM), 1998, 454, 105; (d ) B. S. Jursic,
J. Mol. Struct. (THEOCHEM), 1999, 459, 215.
´
20 (a) For preparation and use of benzyne as dienophile, see:
R. W. Hoffmann, Dehydrobenzenes and Cycloalkynes, Academic
Press, New York, 1967, pp. 200; (b) For further use of benzyne
prepared in situ, see: M. R. Bryce and J. M. Vernon, Adv. Hetero-
cycl. Chem, 1981, 28, 183.
21 T. Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu,
Z. Meng and Y. Fujiwara, J. Am. Chem. Soc., 1999, 121, 11 674.
22 The authors thank Prof. Dr. T. Kitamura of Saga University for
a generous donation of 17.
Sa e Melo, A. S. Campos Neves, Y. Li, S. Mataka, M. Tashiro,
U. Geissler and D. Walton, J. Chem. Res. (S), 1998, 346.
(a) P. Pouzet, I. Erdelmeier, D. Ginderow, J.-P. Mornon, P.
Dansette and D. Mansuy, J. Chem. Soc., Chem. Commun., 1995,
473; (b) Y. Q. Li, M. Matsuda, T. Thiemann, T. Sawada, S.
Mataka and M. Tashiro, Synlett, 1996, 461; (c) J. Nakayama,
T. Yu, Y. Sugihara and A. Ishii, Chem. Lett., 1997, 499; (d )
N. Furukawa, S. Zhang, S. Sato and M. Higaki, Heterocycles,
1997, 44, 61.
4
5
6
(a) P. J. Fagan and W. A. Nugent, J. Am. Chem. Soc., 1988, 110,
2310; (b) F. Meier-Brocks and E. Weiss, J. Organomet. Chem.,
1993, 453, 33; (c) P. J. Fagan, W. A. Nugent and J. C. Calabrese,
J. Am. Chem. Soc., 1994, 116, 1880; (d ) B. T. Jiang and T. D.
Tilley, J. Am. Chem. Soc., 1999, 121, 9744; (e) M. C. Suh and
B. T. Jiang, Angew. Chem., 2000, 112, 2992; M. C. Suh and
B. T. Jiang, Angew. Chem., 2000, 39, 2870.
(a) Y. Q. Li, T. Thiemann, T. Sawada, S. Mataka and M. Tashiro,
J. Org. Chem., 1997, 62, 7926; (b) Y. Q. Li, T. Thiemann, K.
Mimura, T. Sawada, S. Mataka and M. Tashiro, Eur. J. Org.
Chem., 1998, 1841; (c) T. Thiemann, D. Ohira, Y. Q. Li, T.
Sawada, S. Mataka, K. Rauch, M. Noltemeyer and A. de Meijere,
J. Chem. Soc., Perkin Trans. 1, 2000, 2968; (d ) N. Furukawa,
S.-Z. Zhang, E. Horn, O. Takahashi, S. Sato, M. Yokoyama
and K. Yamaguchi, Heterocycles, 1998, 47, 793.
2,5-Bis(tert-butyl)thiophene S-oxide was one of the very first
thiophene S-oxides to be synthesized. In the original synthesis
m-CPBA was used in absence of a Lewis acid the described yield
was very low: W. L. Mock, J. Am. Chem. Soc., 1970, 92, 7610.
For the cycloaddition of sterically hindered thiophene S,S-diox-
ides to dimethyl acetylenedicarboxylate, see: J. Nakayama, R.
Hasemi, K. Yoshimura, Y. Sugihara, S. Yamaoka and N.
Nakamura, J. Org. Chem., 1998, 63, 4912.
(a) I. Benghait and E. I. Becker, J. Org. Chem., 1958, 23, 885; (b)
T. K. Bandyopadhyay and A. J. Bhattacharya, Ind. J. Chem. Sect.
B, 1980, 19B, 439; (c) D. N. Matthews and E. I. Becker, J. Org.
Chem., 1966, 31, 1135.
23 J. Nakayama and K. Yoshimura, Tetrahedron Lett., 1994, 35,
2709.
24 (a) T. R. Chen, M. R. Anderson, S. Grossman and D. G. Peters,
J. Org. Chem., 1987, 52, 1231; (b) V. D. Novokreshchennykh,
S. S. Mochalov and Yu. S. Shabarov, Zh. Org. Khim., 1979, 15,
485 (Russ.)J. Org. Chem. USSR, 1979, 430 (Engl.) and ref. cited.;
(c) R. W. Lang and H.-J. Hansen, Helv. Chim. Acta, 1980, 63,
438; (d ) A. Hausherr, B. Orschel, S. Scherer and H.-U. Reissig,
Synthesis, 2001, 1377 and ref. cited.
25 All compounds were analysed by 1H and 13C NMR IR and MS.
All new compounds gave correct analytical and/or HRMS data.
A number of compounds had been synthesized before by alterna-
tive routes. For 6h and 6j see: W. Ried and K. Boenninghausen,
Ann., 1961, 639, 61. For 6m see:D. CriegeeP. Ludwig, Chem.
Ber., 1961, 94, 2038. For 6n see: J. Mueller andA. Huth, Tetrahe-
dron Lett., 1972, 1035. For 6u, see: J. Novrocik, M. Novrocikova
and J. Foniok, Collect. Czech Chem Commun., 1984, 49, 218.
26 Selected spectroscopic data: 6e: IR (KBr) n 2924, 1724, 1679, 1253
7
8
9
cmꢂ1 1H NMR (270 MHz, CDCl3) d 3.57 (s, 3H, COOCH3),
;
7.35–7.58 (m, 8H), 7.65 (dd, 1H, 3J 7.0 Hz, 4J 1.4 Hz), 7.73
(1H, dd, 3J 7.3 Hz, 4J 1.7 Hz), 7.83 (d, 1H, 3J 8.5 Hz), 8.02 (d,
1H, 3J 8.5 Hz) 13C NMR (67.9 MHz, CDCl3 , DEPT 90, DEPT
135) d 52.47 (COOCH3), 124.86 (Cquat), 128.47 (CH), 128.64
(CH), 129.00 (CH), 130.02 (CH), 131.73 (CH), 133.37 (CH),
133.85 (CH), 134.03 (CH), 136.10 (2C, Cquat), 137.21 (Cquat),
140.61 (Cquat), 141.69 (Cquat), 165.15 (Cquat , COOCH3), 194.55
(Cquat , CO), 194.75 (Cquat , CO) MS (FAB, 3-nitrobenzyl alcohol)
m/z (%) 425 (81BrMH+, 7.2), 423 (79BrMH+, 7.2). 6f:IR (neat) n
10 (a) R. E. Bauer, V. Enkelmann, V. M. Wiesler, A. J. Berresheim
and K. Mullen, Chem. Eur. J., 2002, 8, 3858; (b) S. M. Waybright,
3004, 2954, 2848, 1734, 1575, 1439, 1257 cmꢂ1 1H NMR (270
;
¨
K. McAlpine, H. Laskoski, M. D. Smith and U. H. F. Bunz,
J. Am. Chem. Soc., 2002, 124, 8661; (c) C. D. Simpson, J. D.
MHz, CDCl3) d 3.90 (s, 6H, 2 COOCH3), 3.94 (s, 3H, COOCH3),
7.75 (d 1H, 3J 8.2 Hz), 7.81 (d, 1H, 3J 8.2 Hz) 13C NMR (69.7
New J. Chem., 2003, 27, 1377–1384
1383