186
M.S. Masoud et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 107 (2013) 179–187
Table 11
DTA and TGA analysis of Co(II), Ni(II) and Cu(II) complexes for 5-(p-hydroxybenzylidine)2-thiobarbituric acid.
Complex
Type Tm (K)
D
E
n
am
D
SÃ HÃ 10À3
D
Z
Temp.
TGA
Wt. Loss %
Assignment
(kJ molÀ1
)
(kJ K1 molÀ1 (sÀ1
)
(kJ molÀ1
À7.1250
À12.411
À7.7581
)
)
Found Calc
Co(L)2Á2H2OÁCH3OH Endo 336.18 0.0791
1.61 2.76 À0.0211
1.07 2.13 À0.0177
1.47 2.64 À0.0103
0.0781 19.35–
133
10.67
39.04
10.9
Elimination of 2H2O and CH3OH
Exo
Exo
700.93 0.32380
750.83 0.68060
0.1188 135–
422.5
40.07 Elimination of 2(HC„CNH2), CO,
SO2 and Benz
0.2885 422.58– 31.54
1200
31.97 Elimination of 2(HC„CNH2), CO
and Benz. and formation of
cobalt oxide
Ni(L)2Á4H2O
Endo 348.59 0.050215
1.52 2.68 À0.0254
À8.8880
46.568 20.61–
116.62
12.26
11.48 Dehydration of 4H2O
Endo 493.00 0.094900
Endo 765.09 0.309100
Endo 974.94 0.105200
1.30 2.46 À0.0237
0.84 1.64 À0.0210
1.13 2.23 À0.0294
À11.727
À16.067
À28.705
57.207
79.976
28.972 118.48– 75.75
999.77
93.141
76.36 Elimination of 4(HC„CNH2),
CH4, CO, 2SO2 and 2 Benz. and
formation of nickel oxide
Exo
1190.4 0.397000
2.31 2.31 À0.0197
1.86 2.92 À0.0236
À23.492
À8.0680
Cu(L)2Á4H2OÁCH3OH Endo 341.15 0.0562
58.155 28.58–
122
10.27
5.44
10
Dehydration of 2H2O and
elimination of CH3OH
122–
5.51
Dehydration of 2H2O
253.42
Endo 607.36 0.0370
Endo 1214.7 0.0298
0.88 1.73 À0.0362
1.51 1.95 À0.0200
À22.041
À25.081
12.715 254.92– 14.99
365.23
14.15 Elimination of CO, CH4 and
HC„CH, N2
53.34 Elimination of 2(HC„CNH2),
2CO, SO2 and 2 Benz. And
formation of copper oxide
365.23– 53.31
834.00
83.458
at 25–301 °C and weight loss 18.55% corresponding to liberation of
5H2O and CH3OH molecules. Similarly an endothermic peak of cop-
per (II) complexes at 20–206 °C assigned to the liberation of 4H2O.
The other stepwise decomposition of the complexes started at 184,
303 and 208 °C as endothermic peaks for Co(II), Ni(II) and Cu(II)
complexes, respectively, with one exception where the last step
of Ni complexes proceed with exothermic reaction.
2. The low values of Z (collision factor) indicated the slow nature
of the reaction [45–50]. The degree of decomposition (
calculated and given in Tables 8a–11.
a) was
References
The data for 5-(3-hydroxybenzylidine)2-TBA complexes, Ta-
ble 10, gave endothermic peaks assigned to the liberation of water
molecule and methanol moiety. The peak at 16–93 °C for the Co(II)
complex with a weight loss 15.33% is due to liberation of 4H2O and
CH3OH molecules. Nickel complexes gave a peak at 20–130 °C with
a weight loss 10.63% corresponding to liberation of 4H2O. Mean-
while copper complexes gave a peak at 31–87 °C with a weight loss
9.16% equivalent to liberation of 2H2O and elimination of CH3OH
molecule. Other bands appeared at 87–232.66 °C due to liberation
of other 2H2O molecule. The other peaks attributed to the decom-
position steps ended with the formation of metal oxides as a final
residue. All peaks are endothermic except the last steps of Co(II)
complex and the second step of Ni(II) complex proceeding with
exothermic reactions.
In a similar way, the data of 5-(4-hydroxybenzylidine)2-TBA
complexes, Table 11, gave an endothermic peaks for cobalt com-
plexes at 19–133 °C with weight loss 10.67% corresponding to lib-
eration of 2H2O and CH3OH molecules. Nickel complexes gave a
peak at 20–116 °C with a weight loss 12.26% due to liberation of
4H2O. Copper complexes gave an endothermic peak at 28–122 °C
with a weight loss 10.27% due to liberation of 2H2O and elimina-
tion of CH3OH molecule. It gave also other band at 122–
253.42 °C corresponding to liberation of 2H2O. Other stepwise
decomposition peaks of the complexes started at 135, 118 and
254 °C as endothermic peaks for Co(II), Ni(II) and Cu(II) complexes,
respectively, with one exception the last steps of Co(II), Ni(II) com-
plexes proceeding with exothermic reactions.
[1] R.G. Sans, M.G. Chozas, Pharmazie 43 (12) (1988) 827 (C.A. 110. 146971d
(1989)).
[2] W.C. Cutting, Book of Pharmacol, third ed., Meredith Publishing, New York,
1967.
[3] T. Wasankari, V. Kjala, O. Heinonen, J. Kapanen, Clin. Chim. Acta 234 (12)
(1995).
[4] M.S. Masoud, S.A. Abou El-Enein, H.A. Motoweh, A.E. Ali, J. Therm. Anal. Cal. 75
(2004) 51.
[5] M.S. Masoud, E.A. Khalil, A.M. Hindawey, A.E. Ali, E.M. Fawzy, Spectrochim.
Acta 60A (2004) 2807.
[6] M.S. Masoud, S.A. Abou El-Enein, M. Ayad, A.S. Goher, Spectrochim. Acta A 60
(1) (2004) 77.
[7] M.E. Mahmoud, M.S. Masoud, N.N. Maximous, Mikrochim. Acta 147 (1-2)
(2004) 111.
[8] M.S. Masoud, A.A. Soayed, A.E. Ali, Spectrochim. Acta 60A (2004) 1907.
[9] M.S. Masoud, E.A. Khalil, A.M. Hafez, A.F. El-Husseiny, Spectrochim. Acta, A 61
(2005) 989.
[10] M.S. Masoud, A.E. Ali, R.H. Mohamed, M.A. Mostafa, Spectrochim. Acta 62A
(2005) 1114.
[11] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.M. Ramadan, Can. J. Anal. Sci.
Spectrosc. 50 (4) (2005) 175.
[12] M.S. Masoud, M.F. Amira, S.A. El Moneim, G.M. Mohazy, A.A. Abou Hagar,
Gh.M. El Ashry, Egypt. Sci. Mag. 2 (4) (2005) 79.
[13] M.S. Masoud, T.S. Kasem, M.A. Shaker, A.E. Ali, J. Therm. Anal. Cal. 84 (2006)
549.
[14] M.J. Zaworotko, H.H. Hammud, I. Abbas, V.Ch. Kravstov, M.S. Masoud, J. Coord.
Chem. 59 (1) (2006) 65.
[15] M.S. Masoud, S.S. Haggag, E.A. Khalil, Nucleosides, Nucleotides Nucleic Acids
25 (1) (2006) 73.
[16] M.S. Masoud, M.A. Shaker, A.E. Ali, Spectrochim. Acta 65A (2006) 127.
[17] M.S. Masoud, E.A. Khalil, A.M. Ramadan, J. Anal. Appl. Pyrol. 78 (1) (2007) 14.
[18] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam,
Spectrochim. Acta 67A (2007) 669.
[19] M.S. Masoud, A.A. Ibrahim, E.A. Khalil, A. El-Marghany, Spectrochim. Acta 67A
(2007) 662.
[20] M.S. Masoud, Y.H. Keshk, M.S. Tawfik, A.F. El Hossieny, Bull. Fac. Sci. Alex. Univ.
45 (1,2) (2007) 32.
The mathematical analysis of data gave:
[21] M.S. Masoud, M.F. Amira, A.M. Ramadan, Gh.M. El Ashry, Spectrochim. Acta
69A (2008) 230.
1. The negative values of
DS indicated that the activated complex
has a more ordered structure than the reaction.