10.1002/ejoc.201800090
European Journal of Organic Chemistry
COMMUNICATION
Glycopyranosyl cyanide (1 eq) in THF (1 mL/0.2 mmol of glycopyranosyl
cyanide) was added in one portion followed by slow addition of ethyl
bromoacetate (5 eq) over 45 minutes and stirred for another 15 minutes.
The reaction mixture was cooled to room temperature, quenched with
slow addition of a 3N aqueous HCl solution, stirred for 1 hour, diluted
with ether and the layers were separated. The organic layer was washed
with a saturated aqueous solution of NaHCO3, brine, dried over MgSO4
and concentrated to afford crude product. The crude residue was purified
by column chromatography to afford the desired compound.
[3]
a) F. Schweizer, O. Hindsgaul, Carbohydrate Res. 2006, 341, 1730–
1736; b) R. F. Barghash, A. Massi, A. Dondoni, Org. Biomol. Chem.
2009, 7, 3319–3330.
[4]
[5]
a) D.H. Lenz, G. E. Norris, C. M. Taylor, G. C. Slim, Tetrahedron Lett.
2001, 42, 4589-4591; b) P. Phiasivongsa, J. Gallagher, C.-N. Chen, P.
R. Jones, V. V. Samoshin, P. H. Gross, Org. Lett. 2002, 4, 4587-4590.
See for example: A. K. Misra, É. Bokor, S. Kun, E. Bolyog-Nagy, Á.
Kathó, F. Joó, L. Somsák, Tetrahedron Lett. 2015, 56, 5995- 5998 and
references therein.
[6]
[7]
See for example: S. Sipos, I. Jablonkai, Carbohydrate Res. 2011, 346,
1503-1510 and references therein.
Typical Procedure for the two step sequence addition/isomerisation.
1- addition of organozinc reagents: To a stirred suspension of activated
zinc (5 eq.) in dry THF (1 mL/0.18-0.2 mmol of glycopyranosyl cyanide)
was added dropwise allyl bromide (4.95 eq) and the solution was heated
at 70 °C for 1.5 h. The glycopyranosyl cyanide (1 eq.) in dry THF (1
mL/0.18-0.2 mmol of glycopyranosyl cyanide) was then added and the
solution was stirred for 1.5 h at this temperature. After complete
conversion (TLC), the solution was cooled to room temperature before
quenching with an aqueous 3N HCl solution. The solution was stirred for
30 minutes and diluted with diethyl ether. The aqueous phase was
extracted twice with diethyl ether and the combined organic phases were
washed with brine, dried over MgSO4 and concentrated under reduced
pressure to afford the crude residue.
See for example: G. J. L. Bernardes, L. Linderoth, K. J. Doores, O.
Boutureira, B. G. Davis, ChemBioChem 2011, 12, 1383-1386.
A. Dondoni, A. Massi, E. Minghini, Synlett 2006, 539-542.
P. Bertus, J. Szymoniak, E. Jeanneau, T. Docsa, P. Gergely, J.-P.
Praly, S. Vidal, Bioorg. Med. Chem. Lett. 2008, 18, 4774-4778.
[8]
[9]
[10] See for example: C. Laroche, J.-B. Behr, J. Szymoniak P. Bertus, R.
Plantier-Royon, Eur. J. Org. Chem. 2005, 5084-5088.
[11] E. Ősz, K. Czifrák, T. Deim, L. Szilágyi, A. Bényei, L. Somsák,
Tetrahedron 2001, 57, 5429-5434.
[12] (a) M. Benltifa, S. Vidal, B. Fenet, M. Msaddek, P. G. Goekjian, J.-P.
Praly, A. Brunyánszki, T. Docsa, P. Gergely, Eur. J. Org. Chem.
2006, 4242–4256. (b) M. Benltifa, S. Vidal, D. Gueyrard, P. G. Goekjian,
M. Msaddek, J.-P. Praly, Tetrahedron Lett. 2006, 47, 6143-6147. (c) M.
Tóth, S. Kun, É. Bokor, M. Benltifa, G. Tallec, S. Vidal, T. Docsa, P.
Gergely, L. Somsák, J.-P. Praly, Bioorg. Med. Chem. 2009, 17, 4773–
4785. (d) Glucal series: É. Bokor, E. Szennyes, T. Csupász, N. Tóth, T.
Docsa, P. Gergely, L. Somsák, Carbohydrate Res. 2015, 412, 71-79 .
[13] (a) S. Kun, G. Z. Nagy, M. Tóth, L. Czecze, A. Nguyen Van Nhien, T.
Docsa, P. Gergely, M.-D. Charavgi, P. V. Skourti, E. D. Chrysina, T.
Patonay, L. Somsák, Carbohydrate Res. 2011, 346, 1427-1438. (b) B.
Szőcs, M. Tóth, T. Docsa, P. Gergely, L. Somsák, Carbohydrate Res.
2013, 381, 187-195.
[14] (a) É. Bokor, T. Docsa, P. Gergely, L. Somsák, ACS Med. Chem. Lett.
2013, 4, 612-615. (b) É. Bokor, A. Fekete, G. Varga, B. Szőcs, K.
Czifrák, I. Komáromi L. Somsák, Tetrahedron 2013, 69, 10391-
10404. (c) S. Kun, É. Bokor, G. Varga, B. Szőcs, A. Páhi, K. Czifrák,
M. Tóth, L. Juhász, T. Docsa, P. Gergely, L. Somsák, Eur. J. Med.
Chem. 2014, 76, 567-579. (d) B. Szőcs, K. E. Szabó, A. Kiss-Szikszai,
M. Tóth, L. Somsák, RSC Adv. 2015, 5, 43620-43629.
2- isomerisation step: The crude residue was taken up with THF (1
mL/0.1 mmol) and triethylamine (1 mL/0.6 mmol) was added at room
temperature. The solution was stirred for 1.5 h and the solvents were
removed. Further purification by column chromatography afforded the
desired product.
Supporting Information: General methods, experimental procedures,
characterization data, and copies of the 1H NMR and 13C NMR spectra.
[15] A. Dondoni, A. Massi, E. Minghini, V. Bertolasi, Helv. Chim. Acta
2002, 85, 3331-3348.
[16] (a) Z. Hadady, M. Tóth, L. Somsák, Arkivoc 2004, (vii), 140-149. (b) É.
Bokor, E. Szilágyi, T. Docsa, P. Gergely, L. Somsák, Carbohydrate
Res. 2013, 381, 179-186.
[17] N. E. S. Guisot, I. Ella Obame, P. Ireddy, A. Nourry, C. Saluzzo, G.
Dujardin, D. Dubreuil, M.Pipelier, S. Guillarme J. Org. Chem. 2016, 81,
2364-2371 and see references therein for main synthetic methods to
prepare acyl-C-glycosides.
[18] S. S. Kulkarni, J. Gervay-Hague, Org. Lett. 2006, 8, 5765-5768.
[19] a) F. G. de las Heras, P. Fernández-Resa, J. Chem. Soc., Perkin Trans.
1, 1982, 903-907. b) M.-T. García López, F. G. De las Heras, A. San
Félix, J. Carbohydr. Chem. 1987, 6, 273-279.
Acknowledgements
The authors thank the Ministère de l’Enseignement Supérieur of
Gabon for a PhD fellowship (I. E. O.), the ANR (ANR PCV
Galcerdeo, ANR-08-PCVI-0024-02) (N.E.S.G), and the Région
des Pays de la Loire through the CIMATH program (P.I.) for
post-doctoral fellowships. The authors are grateful to the
Ministère de l’Enseignement Supérieur et de la Recherche of
France and CNRS for financial support. We also thank Frédéric
Legros for technical support, Amélie Durand and Corentin
Jacquemoz for the NMR analyses, Patricia Gangnery and
Emmanuelle Mebold for the HRMS analyses.
[20] Y. Igarashi, T. Shiozawa, Y. Ichikawa, Bioorg. Med. Chem. Lett. 1997,
7, 613-616.
[21] a) A. Dondoni, A. Massi, E. Minghini, Synlett, 2006, 539-542. b) As first
example of Reformatsky-type addition to ribofuranosyl cyanide, see:
A.C. Veronese, C. F. Morelli, Tetrahedron Lett. 1998, 39, 3853-3856
[22] S. M. Hannick, Y. J. Kishi, J. Org. Chem. 1983, 48, 3833-3835.
[23] It is noteworthy that for all isolated ketoesters 7-12, few signals of the
enol tautomer could be observed on the 1H and 13C NMR spectra.
Characteristic signals located at 5.5 and 12 ppm were assigned to enol
tautomer.
Keywords: Glycopyranosyl cyanide
•
Acyl-C-glycoside
•
Organozinc reagents • C-glycosides • β-Ketoester
[24] a) T. Hill, M. B. Tropak, D. Mahuran, S. G. Withers, ChemBioChem
2011, 12, 2151-2154. b) M. S. M. Pearson-Long, F. Boeda, P. Bertus,
Adv. Synth. Catal. 2017, 359, 179-201.
[1]
[2]
R. A. Dwek, Chem. Rev. 1996, 96, 683-720.
a) M. H. D. Postema, Tetrahedron 1992, 48, 8545-8599; b) M. H.
D.Postema, in C-Glycoside Synthesis; CRC Press: Boca Raton, 1995;
c) D. E. Levy, C. Tang, in The Chemistry of C-Glycosides; Pergamon:
Tarrytown, NY, 1995; d) H. Togo, W. He, Y. Waki, M. Yokoyama,
Synlett 1998, 700-717; e) I. P. Smoliakova, Curr. Org. Chem. 2000, 4,
589-608; f) Y. Du, R. J. Linhardt, I. R. Vlahov, Tetrahedron 1998, 54,
9913-9959; g) ꢀ. Bokor, S. Kun, D. Goyard, M. Tꢁth, J.-P. Praly, S.
Vidal, L. Somsꢂk Chem. Rev. 2017, 117, 1687–1764; h) Y. Yang, B. Yu,
Chem. Rev. 2017, 117, 12281–12356; i) K. Kitamura, Y. Ando, T.
Matsumoto, K. Suzuki, Chem. Rev. DOI:10.1021/acs.chemrev.7b00380.
This article is protected by copyright. All rights reserved.