10.1002/ejoc.202000795
European Journal of Organic Chemistry
COMMUNICATION
Org. Chem. 2006, 71, 826; f) W. Ren, Y. Xia, S. Ji, Y. Zhang, X. Wan, J.
Zhao, Org. Lett. 2009, 11, 1841; g) W. Ren, J. Liu, L. Chen, X. Wan, Adv.
Synth. Catal. 2010, 352, 1424; h) M. Tingoli, M. Mazzella, B. Panunzi, A.
Tuzi, Eur. J. Org. Chem. 2011, 399; i) K. Sakthivel, K. Srinivasan, Eur. J.
Org. Chem. 2011, 2781; j) C.-F. Xu, M. Xu, Y.-X. Jia, C-Y Li, Org. Lett.
2011, 13, 1556; k) S. Trosien, S. R. Waldvogel, Org. Lett. 2012, 14, 2976;
l) X. Zhu, P. Li, Q. Shi, L. Wang, Green Chem. 2016, 18, 6373; m) H. T.
Qin, X. Xu, F. Liu, ChemCatChem 2017, 9, 1409; n) T. Hering, T. Slanina,
A. Hancock, U. Wille, B. König, Chem. Commun. 2015, 51, 6568; o) V.
Štrukil, I. Sajko, Chem. Commun. 2017, 53, 9101; p) J. Zhou, X.-Z. Tao,
J.-J. Dai, C.-G. Li, J. Xu, H.-M. Xu, H.-J. Xu, Chem. Commun. 2019, 55,
9208; q) W. Yang, Y. Chen, Y. Yao, X. Yang, Q. Lin, D. Yang, J. Org.
Chem. 2019, 84, 11080; r) A. Gao, F. Yang, J. Li, Y. Wu, Tetrahedron
2012, 68, 4950; s) N. Xu, D.-W. Gu, Y.-S. Dong, F.-P. Yi, L. Cai, X.-Y.
Wu, X.-X. Guo, Tetrahedron Lett. 2015, 56, 1517; t) Y. Su, X. Sun, G.
Wu, N. Jiao, Angew. Chem., Int. Ed. 2013, 52, 9808; u) S. Chen, Z. Liu,
E. Shi, L. Chen, W. Wei, H. Li, Y. Cheng, X. Wan, Org. Lett. 2011, 13,
2274; v) A. H. Bansode, G. Suryavanshi, ACS Omega 2019, 4, 9636; w)
S. Jiang, Y. Li, X. Luo, G. Huang, Y. Shao, D. Li, B. Li, Tetrahedron Lett.
2018, 59, 3249-32252; x) M.-B. Zhou, M.-J. Luo, M. Hu, J.-H. Li, Chine.
J. Chem. 2020, 38, 553-558; y) Y. Lu, M.-J. Luo, M. Hu, Y. Li, J.-H. Li,
Adv. Synth. Catal. 2020, 362, 1846-1850; z) A. Y. Dubovtsev, N. V.
Shcherbakov, D. V. Darin, V. Y. Kukushkin, J. Org. Chem. 2020, 85, 745-
757; For a review, see: aa) L.-Z. Yuan, A. Hamze, M. Alami, O. Provot,
Synthesis 2017, 49, 504-525.
Scheme 3. Possible Mechanism.
In summary, we have developed a CuBr2 and I2 cooperative
catalysis for the oxidative C-C bond cleavage of 1,3-dicarbonyl
compounds to access synthetically valuable 1,2-dicarbonyl
compounds using DMSO as the oxidant. Considering the 1,2-
dicarbonyl compounds, high selectivity in the C-C bond cleavage
is achieved during the CO release process. Moreover, this
method is general to 1,3-dicarbonyl compounds, including 1,3-
diketones, 1,3-keto esters and 1,3-keto amides, with a broad
functional group tolerability, wherein use of a Cu catalyst to
enhance the activity of the iodine would spur conceptually new C-
C bond cleavage methodology.
[3]
For selected papers, see: a) Q.-A. Shi, J.-G. Wang, K. Cai, Chin. J. Org.
Chem. 1999, 19, 559; b) H. Liang, H. Liu, X. Jiang, Synlett 2016, 27,
2774; c) M. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata, H. Nemoto,
Chem. Commun. 1999, 1387; d) S. A. Tymonko, B. A. Nattier, R. S.
Mohan, Tetrahedron Lett. 1999, 40, 7657; e) M. Okimoto, Y. Takahashi,
Y. Nagata, G. Sasaki, K. Numata, Synthesis 2005, 705; f) C. Joo, S. Kang,
S. M. Kim, H. Han, J. W. Yang, Tetrahedron Lett. 2010, 51, 6006; g) N.
Kornblum, J. W. Powers, G. J. Anderson, W. J. Jones, H. O. Larson, O.
Levand, W. M. Weaver, J. Am. Chem. Soc. 1957, 79, 6562; h) A. Ghoshal,
M. D. Ambule, R. Sravanthi, M. Taneja, A. K. Srivastava, New J. Chem.
2019, 43, 14459; i) P.-G. Li, H. Zhu, M. Fan, C. Yan, K. Shi, X.-W. Chi,
L.-H. Zou, Org. Biomol. Chem. 2019, 17, 5902; k) T. Matsuda, S. Oyama,
Org. Biomol. Chem. 2020, 18, 3679.
Acknowledgements
We thank the Key R&D Plan of Jiangxi Province
(20181BBG78034) for financial support.
Keywords: copper • iodine • oxidant • 1,3-dicarbonyls • 1,2-
dicarbonys
[4]
For selected papers, see: a) R. Sanz, M. P. Castroviejo, V. Guilarte, A.
Pérez, F. J. Fananás, J. Org. Chem. 2007, 72, 5113; b) J. J. Maresh, L.-
A. Giddings, A. Friedrich, E. A. Loris, S. Panjikar, B. L. Trout, J. Stockigt,
B. Peters, S. E. O’Connor, J. Am. Chem. Soc. 2008, 130, 710; c) T.
Kashiwabara, M. Tanaka, J. Org. Chem. 2009, 74, 3958; d) Z. He, X. Qi,
Z. She, Y. Zhao, S. Li, J. Tang, G. Gao, Y. Lan, J. You, J. Org. Chem.
2017, 82, 1403; e) H.-X. Zou, Y. Li, Y. Yang, J.-H. Li, J. Xiang, Adv. Synth.
Catal. 2018, 360, 1439; f) T. Guo, X.-H. Fu, M. Zhang, Y.-L. Li, Y.-C. Ma,
Org. Biomol. Chem. 2019, 17, 3150; and references cited therein.
a) L. Huang, K. Cheng, B. Yao, Y. Xie, Y. Zhang, J. Org. Chem. 2011,
76, 5732; b) C. Zhang, X. Wang, N. Jiao, Synlett 2014, 25, 1458; c) P.-J.
Zhou, C.-K. Li, S.-F. Zhou, A. Shoberu, J.-P. Zou, Org. Biomol. Chem.
2017, 15, 2629; d) N. Tada, M. Shomura, H. Nakayama, T. Miura, A. Itoh,
Synlett 2010, 1979; e) Y. Yuan, H. Zhu, Eur. J. Org. Chem. 2012, 329.
For selected papers on the other methods for the synthesis of 1,2-
dicarbonyl compounds, see: a) X. Wang, G. Cheng, J. Shen, X. Yang,
M.-e Wei, Y. Feng, X. Cui, Org. Chem. Front. 2014, 1, 1001-1004; b) R.
Luo, J. Liao, J. Zhang, Chin. J. Org. Chem. 2013, 33, 2298; c) P. Hirapara,
D. Riemer, N. Hazra, J. Gajera, M. Finger, S. Das, Green Chem. 2017,
19, 5356; d) C. Wang, Z. Zhang, K. Liu, J. Yan, T. Zhang, G. Lu, Q. Meng,
H. Chi, C. Duan, Org. Biomol. Chem. 2017, 15, 6185; e) K. Schwaerzer,
A. Bellan, M. Zoeschg, K. Karaghiosoff, P. Knochel, Chem. Eur. J. 2019,
25, 9415-9418, and references cited therein
[1]
For selected reviews and papers, see: a) P. Hoyos, J. V. Sinisterra, F.
Molinari, A. R. Alcántara, P. D. de Maria, Acc. Chem. Res. 2010, 43, 288;
b) A. Cabrera, P. Sharma, M. Ayala, L. Rubio-Perez, M. Amézquita-
Valencia, Tetrahedron Lett. 2011, 52, 6758; c) Y. Liu, H. Wang, J. Wan,
Asian J. Org. Chem. 2013, 2, 374; d) Y. Jiang, M. Hengel, C. Pan, J. N.
Seiber, T. Shibamoto, T. J. Agricult. Food Chem. 2013, 61, 1067; e) P.
G. Echeverria, A. T. Phansavath, P. Ratovelomanana, V. Vidal,
Synthesis 2016, 2523; f) R. V. Sumesh, M. Muthu, A. I. Almansour, R. S.
Kumar, N. Arumugam, S. Athimoolam, E. Arockia, J. Y. Prabha, R. R.
Kumar, ACS Comb. Sci. 2016, 18, 262; g) J. A. R. Rodrigues, P. J. S.
Moran, B. Z. Costa, A. J. Marsaioli, RSC Green Chemistry Series 2016,
45 (White Biotechnology for Sustainable Chemistry), 245; h) M. Turek,
D. Szczesna, M. Koprowski, P. Balczewski, Beilstein J. Org. Chem. 2017,
13, 451; i) M. M. Sheha, N. M. Mahfouz, H. Y. Hassan, A. F. Youssef, T.
Mimoto, Y. Kiso, Eur. J. Med. Chem. 2000, 35, 887; j) R. Maurya, R.
Singh, M. Deepak, S. S. Handa, P. P. Yadav, P. K. Mishra,
Phytochemistry 2004, 65, 915; k) T. Cupido, J. Tulla-Puche, J. Spengler,
Curr. Opin. Drug Discovery Dev. 2007, 10, 768; l) M. W. Anders,
Toxicology 2017, 388, 21; m) T. Lechel, R. Kumar, M. K. Bera, R. Zimmer,
H.-U. Reissig, Beilstein J. Org. Chem. 2019, 15, 655; n) Y. Zhuang, L.
Dong, J.-p. Wang, S.-j. Wang, S. Wang, J. Sci. Food Agric. 2020, 100,
2296-2304; o) K. Yang, Z. Ma, H.-X. Tong, X.-Q. Sun, X.-Y. Hu, Z.-Y. Li,
Chin. Chem. Lett. 2020, DOI: 10.1016/j.cclet.2020.02.057.
[5]
[6]
[7]
a) S. Borthakur, S. Baruah, B. Sarma, S. Gogoi. Org. Lett. 2019, 21,
2768; b) A. Verma, S. Kumar, Org. Lett. 2016, 18, 4388.
[2]
For selected papers, see: a) S. Baskaran, J. Das, S. Chandrasekaran, J.
Org. Chem. 1989, 54, 5182; b) Y. Ishii, Y. Sakata, J. Org. Chem. 1990,
55, 5545; c) C.-M. Che, W.-Y. Yu, P.-M. Chan, W.-C. Cheng, S.-M. Peng,
K.-C. Lau, W.-K. Li, J. Am. Chem. Soc. 2000, 122, 11380; d) S.
Kobayashi, H. Miyamura, R. Akiyama, T. Ishida, J. Am. Chem. Soc. 2005,
127, 9251; e) Z. Wan, C. D. Jones, D. Mitchell, J. Y. Pu, T. Y. Zhang, J.
4
This article is protected by copyright. All rights reserved.