H. Shimizu et al. / Tetrahedron Letters 42 (2001) 4183–4186
4185
CH2I
CH2I
CH2OH
CH2OH
CH2OTs
CH2OTs
i
ii
iii
10
13 (96%)
12 (45%)
11 (43%)
vi
O
v
iv
S
S
O
N
S
N
N
H
CO2CH2CCl3
15 (79%)
14 (61%)
16 (54%)
Ts: p-toluenesulfonyl
vii
+
S
N CF3SO3
17 (57%)
Scheme 5. Reagents: (i) TsCl/pyridine; (ii) NaI/acetone; (iii) t-BuOK/t-BuOH; (iv) Cl3CCH2OCONH2/SOCl2/pyridine/ether; (v)
Zn/t-BuOH; (vi) PPSE/CH2Cl2; (vii) SO2Cl2/CF3SO3H/0°C.
2. Shimizu, H.; Hatano, T.; Matsuda, T.; Iwamura, T.
Tetrahedron Lett. 1999, 40, 95–96.
5-alkyl group (Scheme 4). The general method using
SO2Cl2/70% HClO4 afforded 1,2-thiazinylium salt 6c as
stable colorless needles.10 The reactions of 6c with
nucleophiles were studied. The reaction with NaOMe
gave 6-methoxy-1,2-thiazine (7c)11 in high yield. We
have been interested in the regiochemistry of [2++4]-
type polar cycloaddition of 1,2-thiazinylium salts with
1,3-dienes, as described above. In line with this interest,
we investigated the cycloaddition of the salt 6c. Treat-
ment with 2,3-dimethyl-1,3-butadiene provided 5-t-
butyl-1,6-(2,3-dimethyl-2-buteno)-6H-1,2-thiazinium
perchlorate (8c), not 9c, showing that the [2++4] polar
cycloaddition reaction of the salt 6c occurred across the
CꢀS+ bond, and not across the NꢀS+ bond, of the
thiazinylium ring. The structure of 8c was determined
by 1H NMR spectral data, showing the methylene
protons b to the sulfur atom at l 2.32 (dd, J 18 and 10
Hz) and 2.50 (dd, J 18 and 6 Hz) and a methine proton
coupled with those methylene protons at l 4.42 (dd, J
10 and 6 Hz).12
3. (a) Lombardino, J. G. Nonsteroidal Anti-inflammatory
Drugs; Wiley: New York, 1985; (b) Garigipati, R. S.;
Cordova, R.; Parvez, M.; Weinreb, S. M. Tetrahedron
1986, 42, 2979–2983; (c) Bonacorso, H. G.; Bittencourt,
S. R. T.; Lourega, R. V.; Flores, A. F. C.; Zanatta, N.;
Martins, M. A. P. Synthesis 2000, 1431–1434.
4. Shimizu, H.; Hatano, T.; Iwamura, T. Tetrahedron Lett.
1999, 40, 1505–1508.
5. Boese, R.; Haas, A.; Heß, T. Chem. Ber. 1992, 125,
581–589.
6. (a) Imamoto, T.; Matsumoto, T.; Yokoyama, M.;
Yamaguchi, K. J. Org. Chem. 1984, 49, 1105–1110; (b)
Yoshimatsu, M.; Yamada, H.; Shimizu, H.; Kataoka, T.
J. Chem. Soc., Chem. Commun. 1994, 2107–2108; (c)
Yoshimatsu, M.; Naito, M.; Kawahigashi, M.; Shimizu,
H.; Kataoka, T. J. Org. Chem. 1995, 60, 4798–4802; (d)
Yoshimatsu, M.; Fuseya, T. Chem. Pharm. Bull. 1996, 44,
1954–1957.
1
7. Characterization data of 6a: IR w 1090 (ClO4−); H NMR
l 2.85 (3H, s, Me), 8.62 (1H, d, J 5 Hz, 4-H), 10.12 (1H,
d, J 5 Hz, 3-H), 11.04 (1H, s, 6-H); MS m/z 111 (M+−
ClO4−).
Finally, we performed the preparation of 5,8-ethano-
5,8-dihydrobenzo[d]-1,2-thiazinylium salt which is
expected to be resistant to the deprotonation at the
4,5-disubstituted moiety according to the Bredt’s rule.
5,6-Dimethylenebicyclo[2.2.2]oct-2-ene 13 was prepared
using the usual method, as shown in Scheme 5. The
p-toluenesulfonylation and subsequent iodination of
the diol 10 afforded 5,6-bis(iodomethyl)bicyclo[2.2.2]-
oct-2-ene 12 in moderate yields.13 The diiodide 12 was
treated with a large excess of t-BuOK in t-BuOH under
reflux conditions to give 13 in high yield. The general
procedure for the preparation of thiazinylium salts with
the diene 13 provided the desired 1,2-thiazinylium tri-
fluoromethanesulfonate 1714 as a rather stable salt. We
are now investigating the chemistry of this unique
4,5-disubstituted 1,2-thiazinylium salt 17.
1
8. Characterization data of 7a: IR w 1120 (ether); H NMR
l 0.88 (3H, t, J 7 Hz, Me), 2.13 (3H, s, Me), 3.28–3.39
(1H, m, CH2), 3.63–3.70 (1H, m, CH2), 5.08 (1H, s, 6-H),
6.23 (1H, d, J 4 Hz, 4-H), 8.07 (1H, d, J 4 Hz, 3-H); MS
m/z 112 (M+−OEt).
9. Characterization data of 6b: 1H NMR l 2.74 (3H, s, Me),
2.82 (3H, s, Me), 10.03 (1H, s, 3-H), 10.77 (1H, s, 6-H).
10. Characterization data of 6c: colorless prisms, mp 188–
191°C, IR w 1110 (ClO4−), 1H NMR l 1.48 (9H, s,
Me×3), 8.83 (1H, d, J 4 Hz, 4-H), 10.18 (1H, d, J 4 Hz,
3-H), 11.23 (1H, s, 6-H); 13C NMR l 29.52 (q×3), 38.81
(s), 137.13 (d), 165.17 (d), 175.97 (d); MS m/z 154
(M+−ClO4). Anal. calcd for C8H12ClNO4S: C, 37.87; H,
4.77; N, 5.52. Found: C, 37.69; H, 4.72; N, 5.51.
1
11. Characterization data of 7c: IR w 1060 (ether); H NMR
l 1.23 (9H, s, Me×3), 3.27 (3H, s, OMe), 5.07 (1H, s,
6-H), 6.29 (1H, d, J 4 Hz, 4-H), 8.22 (1H, d, J 4 Hz,
3-H), 13C NMR l 29.38 (q×3), 35.96 (s), 52.76 (q), 75.98
(d), 115.63 (d), 145.57 (s), 153.61 (d); high-resolution
mass calcd for C9H15NOS: 185.0874, found m/z
185.0877.
References
1. Boger, D. L.; Weinreb, S. M. In Hetero Diels–Alder
Methodology in Organic Synthesis; Wasserman, H. H.,
Ed.; Academic Press, 1987; p. 1.