C. M. Rao Volla, P. Vogel / Tetrahedron Letters 49 (2008) 5961–5964
5963
16) as well as for electron-rich aryl iodides (entries 11–14). 4-Iodo-
nitrobenzene decomposed immediately under our reaction condi-
tions to give a mixture containing nitrobenzene and aniline and
no trace of the desired product of cross-coupling (entry 8). All
products of C–C coupling were obtained pure and were identical
to authentic samples (1H, 13C NMR spectra).
tube was connected to a vacuum line and filled with Ar (3 times),
NMP (2 mL) and phenylacetylene (0.2 mL, 1.84 mmol, 2 equiv)
were added. The reaction mixture was stirred in a microwave reac-
tor at 140 °C for 2.5 h. After cooling to room temperature, the mix-
ture was diluted with diethyl ether, and water was added. The
aqueous layer was extracted again with ether (20 mL * 3 times).
The combined organic phases were dried (MgSO4), filtered, and
concentrated under reduced pressure (rotavap). The residue was
purified by flash chromatography on silica gel.
3. Discussion
More studies are necessary to approach possible mechanisms of
our cross-coupling reactions. Under our conditions that do not use
any ligand apart from solvent (DMF, DMSO, and NMP), we find that
CuI alone catalyzes the homo-coupling very slowly (Table 1, entry
3). On addition of a Fe salt, the reaction is accelerated significantly.
It is known that CuI/Na2CO3 catalyzes the homo-coupling of termi-
nal alkynes with aryliodonium salts.26 Thus, a possible role of the
Fe salt is to activate the oxidative addition of CuI, or Cu acetylide
intermediate (that could arise from Cu(II) salt intermediates
according to the Bohlmann mechanism27), onto aryl iodide by
coordination to the iodo moiety of ArI. Alternatively, the activation
could involve a SET from ArI to the Fe(III) salt giving FeXꢁ3 and the
corresponding radical-cation ArI+Å that undergoes a faster oxidative
addition than neutral ArI. The formation of the Ar–Cu(I)–acetylide
intermediates might be preceded by the formation of Cu acetylides,
or by addition of ArCuI to the terminal acetylenes,28 followed by
base-induced HI elimination. The nature of the base is essential
as Et3N does not induce the cross-coupling reaction as well as
Cs2CO3.
Acknowledgement
We are grateful to the Swiss National Science Foundation (Bern)
and the Roche Research Foundation (Basel). We also thank F. Sep-
ulveda and M. Rey for their technical help.
References and notes
1. (a) Sonogashira, K. In Metal-Catalyzed Cross-Coupling Reactions; Diedrich, F., de
Meijere, A., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 1, p 319; (b) Sonogashira,
K. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.,
de Meijere, A., Eds.; Wiley-Interscience: New York, 2002; p 493. and references
therein.
2. For reviews: (a) Hassan, J.; Sevignon, M.; Gozzi, Ci.; Schulz, E.; Lemaire, M.
Chem. Rev. 2002, 102, 1359; (b) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107,
874–922 and references therein.
3. (a) Appukkutan, P.; Dehaen, W.; Eycken, E. V. D. Eur. J. Org. Chem. 2003, 4713–
4716; (b) Leadbeater, N. E.; Marco, M.; Tominack, B. J. Org. Lett. 2003, 5, 3919–
3922.
4. (a) Okuro, K.; Furuune, M.; Miura, N.; Nomura, M. Tetrahedron Lett. 1992, 33,
5363–5364; (b) Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M. J. Org.
Chem. 1993, 58, 4716–4721; (c) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D.
Org. Lett. 2001, 3, 4315–4317; (d) Bates, C. G.; Saejueng, P.; Murphy, J. M.;
Venkataraman, D. Org. Lett. 2002, 4, 4727–4729; (e) Wang, J.-X.; Liu, Z.; Hu, Y.;
Wei, B.; Kang, L. Synth. Commun. 2002, 32, 1937–1945; (f) Thatagar, M. B.;
Beckers, J.; Rothenberg, G. Green Chem. 2004, 6, 215–218.
4. Conclusion
In summary, we have developed new conditions for the C–C
cross-coupling of aromatic iodides with terminal acetylenes using
cheap, non-toxic, commercially available iron salts, and CuI as cat-
alysts. No toxic or/and expensive ligand is required for the metallic
catalysts as NMP (or DMSO, DMF), the solvent, is probably playing
the role of ligand. The synergic effect of Fe and Cu salts is thus
demonstrated in Sonogashira–Hagihara reaction.29,30 Furthermore,
they are high yielded and can be run in shorter time using micro-
wave. They should find economical applications in the fields of
material sciences and medicinal chemistry.
5. (a) Park, S.; Kim, M.; Koo, D. H.; Chang, S. Adv. Synth. Catal. 2004, 346, 1638–
1640; (b) Garbacia, S.; Touzani, R.; Lavastre, O. J. Comb. Chem. 2004, 6, 297–300.
6. (a) Beletskaya, I. P.; Latyshev, G. V.; Tsvetkov, A. V.; Lukashev, N. V. Tetrahedron
Lett. 2003, 44, 5011–5013; (b) Wang, L.; Li, P.; Zhang, Y. Chem. Commun. 2004,
514–515; (c) Wang, M.; Li, P.; Wang, L. Synth. Commun. 2004, 34, 2803–2812.
7. Li, J.-H.; Li, J.-L.; Want, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C. J. Org.
Chem. 2007, 72, 2053–2057.
8. Biffis, A.; Scattolin, E.; Ravasio, N.; Zaccheria, F. Tetrahedron Lett. 2007, 48,
8761–8764.
9. (a) Taillefer, M.; Ouali, A.; Renard, B.; Spindler, J.-F. Chem. Eur. J. 2006, 12, 5301–
5313; (b) Ouali, A.; Laurent, R.; Caminade, A.-M.; Majoral, J.-P.; Taillefer, M. J.
Am. Chem. Soc. 2006, 128, 15980–15981; (c) Ouali, A.; Taillefer, M.; Spindler, J.-
F.; Jutand, A. Organometallics 2007, 26, 65–74; (d) Ouali, A.; Spindler, J.-F.;
Jutand, A.; Taillefer, M. Adv. Synth. Catal. 2007, 349, 1906–1916; (e) Monnier, F.;
Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096–3099.
5. Experimental Procedure
10. Kharasch, M. S.; Reinmuth, O. Grignard Reactions of Nonmetallic Substances;
Prentice-Hall: New York, 1954. p 1257.
11. (a) Tamura, M.; Kochi, J. J. Am. Chem. Soc. 1971, 93, 1487–1489; (b) Tamura, M.;
Kochi, J. J. Organometal. Chem. 1971, 31, 289–309; (c) Kochi, J. Acc. Chem. Res.
1974, 7, 351–360.
12. Molander, G. A.; Rahn, B. J.; Shubert, D. C.; Bonde, S. E. Tetrahedron Lett. 1983,
24, 5449–5452.
13. (a) Cahiez, G.; Chavant, P. Y.; Metais, E. Tetrahedron Lett. 1992, 33, 5245–5248;
(b) Cahiez, G.; Marquais, S. Tetrahedron Lett. 1996, 37, 1773–1776; (c) Cahiez,
G.; Avedissian, H. Synthesis 1998, 1199–1205; (d) Cahiez, G.; Habiak, V.;
Duplais, C.; Moyeux, A. Angew. Chem., Int. Ed. 2007, 46, 4364–4366; (e) Cahiez,
G.; Duplais, C.; Moyeux, A. Org. Lett. 2007, 9, 3253–3254.
14. (a) Fürstner, A.; Leitner, A.; Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124,
13856–13864; (b) Martin, R.; Fürstner, A. Angew. Chem., Int. Ed. 2004, 43, 3955–
3957; (c) Fürstner, A.; Krause, H.; Lehmann, C. W. Angew. Chem., Int. Ed. 2006,
45, 440–444; (d) Scheiper, B.; Bonnekessel, M.; Krause, H.; Fürstner, A. J. Org.
Chem. 2004, 69, 3943–3949.
In a sealable tube dried under vacuum were placed the corre-
sponding ArI (if it is a solid) (1 equiv), Fe(acac)3 (10 mol %), CuI
(10 mol %), and Cs2CO3 (2 equiv) (glove box). Then, the tube was
sealed with the cap. The tube was connected to a vacuum line
and filled with Ar (3 times), NMP (2 mL), the corresponding iodide
(if it is a liquid) (1 equiv), and the corresponding alkyne (2 equiv)
were added. The reaction mixture was stirred at 140 °C for the time
mentioned. After cooling to room temperature, the mixture was di-
luted with diethyl ether, and water was added. The aqueous layer
was extracted again with ether (20 mL * 3 times). The combined
organic phases were dried (MgSO4), filtered, and concentrated un-
der reduced pressure (rotavap). The residue was purified by flash
chromatography on silica gel.
15. (a) Dohle, W.; Kopp, F.; Cahiez, G.; Knochel, P. Synlett 2001, 1901–1904; (b)
Duplais, C.; Bures, F.; Korn, T. J.; Sapountzis, I.; Cahiez, G.; Knochel, P. Angew.
Chem., Int. Ed. 2004, 43, 2968–2970.
16. (a) Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Goodby, J. W.; Hird, M. Chem.
Commun. 2004, 2822–2823; (b) Bedford, R. B.; Bruce, D. W.; Frost, R. M.; Hird,
M. Chem. Commun. 2005, 4161–4163; (c) Bedford, R. B.; Betham, M.; Bruce, D.
W.; Davis, S. A.; Frost, R. M.; Hird, M. Chem. Commun. 2006, 1398–1400; (d)
Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.; Frost, R. M.; Hird,
M. J. Org. Chem. 2006, 71, 1104–1110.
17. (a) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2000, 122, 978–979;
(b) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126,
3686–3687; (c) Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. 2007, 129,
9844–9845; (d) Guérinot, A.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2007,
6. Experimental Procedure for reactions under microwave
irradiation
In a 5 mL microwave tube were placed iodotoluene (0.2 g,
0.92 mmol, 1 equiv), Fe(acac)3 (32 mg, 0.09 mmol, 10 mol %), CuI
(18 mg, 0.09 mmol, 10 mol %), and Cs2CO3 (0.6 g, 1.84 mmol,
2 equiv) (glove box). Then, the tube was sealed with the cap. The