Please do not adjust margins
Photochemical & Photobiological Sciences
Page 4 of 4
DOI: 10.1039/C7PP00244K
COMMUNICATION
Journal Name
9. (a) M. Matsumoto, M. Yamada and N. Watanabe, Reversible
1,4-cycloaddition of singlet oxygen to N-substituted 2-
pyridones: 1,4-Endoperoxide as a versatile chemical source
of singlet oxygen, Chem. Commun., 2005, 483–485; (b) S.
Benz, S. Nötzli, J. S. Siegel, D. Eberli and H. J. Jessen,
Controlled oxygen release from pyridone endoperoxides
promotes cell survival under anoxic conditions, J. Med.
Chem., 2013, 56, 10171–10182.
Acknowledgements
This work was supported by grants from Science Foundation Ireland
(IvP 13/IA/1894), the European Commission (CONSORT, Grant No.
655142) and the Irish Research Council (GOIPG/2016/1250).
Notes and references
10. (a) I. S. Turan, D. Yildiz, A. Turksoy, G. Gunaydin and E. U.
bifunctional photosensitizer for enhanced
Akkaya,
A
‡
CCDC 1559133, 1559134 contain the supplementary
fractional photodynamic therapy: Singlet oxygen generation
in the presence and absence of light, Angew. Chem. Int. Ed.,
2016, 55, 2875–2878; (b) S. Kolemen, T. Ozdemir, D. Lee, G.
Mi Kim, T. Karatas, J. Yoon and E. U. Akkaya, Remote-
controlled release of singlet oxygen by the plasmonic heating
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
§ The crystal structure of P1 exhibits a rare packing arrangement
where porphyrin layers are separated by channels of water
molecules (see S.I.). This is aided by an extensive hydrogen-bonded
water bridge between two pyridone oxygen atoms with a donor-
acceptor distance of 2.739 – 2.771(6) Å.
of endoperoxide-modified gold nanorods: Towards
a
paradigm change in photodynamic therapy, Angew. Chem.
Int. Ed., 2016, 55, 3606–3610.
11. C. C. W. Changtong, D. W. Carney, L. Luo, C. A. Zoto, J. L.
Lombardi and R. E. Connors, A porphyrin molecule that
generates, traps, stores, and releases singlet oxygen, J.
Photochem. Photobiol. A: Chem., 2013, 260, 9–13.
12. S. Kim, M. Fujitsuka and T. Majima, Photochemistry of Singlet
Oxygen Sensor Green, J. Phys. Chem. B, 2013, 117, 13985–
13992.
13. M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K.
J. Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle
and M. O. Senge, Generation of triplet excited states via
photoinduced electron transfer in meso-anthra-BODIPY:
Fluorogenic response toward singlet oxygen in solution and
in vitro J. Am. Chem. Soc., 2017, 139, 6282–6285.
1
T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D.
Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic
Therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.
2
(a) S. B. Brown, E. A. Brown and I. Walker, The present and
future role of photodynamic therapy in cancer treatment,
Lancet Oncol., 2004,
Demidova and M. R. Hamblin, Mechanisms in photodynamic
therapy: Part three Photosensitizer pharmacokinetics,
biodistribution, tumor localization and modes of tumor
destruction, Photodiagn. Photodyn. Ther., 2005, , 91–106;
5, 497–508; (b) A. P. Castano, T. N.
–
2
(c) M. O. Senge, mTHPC – A Drug on its Way from Second to
Third Generation Photosensitizer?, Photodiagn. Photodyn
Ther., 2012, 9, 170–179; (d) J. F. Lovell, T. W. Liu, J. Chen and
G. Zheng, Activatable Photosensitizers for Imaging and
Therapy, Chem. Rev., 2010, 110, 2839–2857.
14. T. Mossman, Rapid colorimetric assay for cellular growth and
survival: application to proliferation and cytotoxicity assays,
J. Immunol. Meth. 1983, 65, 55–63.
3
(a) J. Moan and K. Berg, The photodegradation of porphyrins
in cells can be used to estimate the lifetime of singlet
oxygen, Photochem. Photobiol., 1991, 53, 549–553; (b) M. K.
Kuimova, G. Yahioglu and P. R. Ogilby, Singlet oxygen in a
cell: Spatially dependent lifetimes and quenching rate
constants, J. Am. Chem. Soc., 2009, 131, 332–340.
ToC graphic
4. (a) L. Yang, L. Zhu, W. Dong, Y. Cao and Z. Rong, Oxygen-
generating scaffolds: new strategy for bone tissue
A
engineering, Bone, 2013, 57, 322–323; (b) A. Northup and D.
Cassidy, Calcium peroxide (CaO2) for use in modified Fenton
chemistry, J. Hazard. Mater., 2008, 152, 1164–1170.
5. C. Moureu, C. Dufraisse and P. M. Dean, Un peroxyde
organique dissociable: Le peroxyde de rubrène, C. R. Acad.
Sci., 1926, 182, 1584–1587.
6. (a) J.-M. Aubry, C. Pierlot, J. Rigaudy and R. Schmidt,
Reversible binding of oxygen to aromatic compounds, Acc.
Chem. Res., 2003, 36, 668–675; (b) M.A. Filatov and M. O.
Senge, Molecular devices based on reversible singlet oxygen
binding in optical and photomedical applications, Mol. Syst.
Des. Eng., 2016, 1, 258–272.
7. (a) F. Käsermann and C. Kempf, Inactivation of enveloped
viruses by singlet oxygen thermally generated from
polymeric naphthalene derivative, Antiviral Res., 1998, 38
55–62; (b) D. Posavec, M. Zabel, U. Bogner, G. Bernhardt and
G. Knör, Functionalized derivatives of 1,4-
a
,
dimethylnaphthalene as precursors for biomedical
applications: Synthesis, structures, spectroscopy and
photochemical activation in the presence of dioxygen, Org.
Biomol. Chem., 2012, 10, 7062–7069.
8. M. A. Filatov, E. Heinrich, D. Busko, I. Z. Ilieva, K. Landfester
and S. Baluschev, Reversible oxygen addition on a triplet
sensitizer molecule: Protection from excited state
depopulation, Phys. Chem. Chem. Phys., 2015, 17, 6501–
6510.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins