5424
I. Izzo et al. / Tetrahedron Letters 42 (2001) 5421–5424
15. Congreve, M. S.; Davison, E. C.; Furhy, M. A. M.;
Holmes, A. B.; Payne, A. N.; Robinson, R. A.; Ward, S.
E. Synlett 1993, 663–664.
dd, J=9.0, 6.3 Hz, -CHHOBn), 3.72 (1H, dd, J=9.7, 6.1
Hz, -CHHOTBDPS), 3.75 (1H, dd, J=9.7, 4.4 Hz,
-CHHOTBDPS), 4.50 (2H, s, -CH2Ph), 5.11 (1H, dd,
J=10.8, 1.0 Hz, CHHꢀCH-), 5.12 (1H, dd, J=17.7, 1.0
16. Lee, M. G.; Du, F. J.; Chun, M. W.; Chu, C. K. J. Org.
Chem. 1997, 62, 1991–1995.
Hz, CHHꢀCH-), 5.84 (1 H, m, CH2ꢀCH-), 7.30–7.45
13
17. (2S,3R)-(+)-3-Benzyloxy-2,3-epoxy-1-butyl
4-nitroben-
(11H, m, C6H5-), 7.64 (4H, m, C6H5-);
C NMR (100
zoate and its enantiomer are available from Fluka
Chemie AG, Switzerland (e.e.>98%). Hydrolysis of the
p-nitrobenzoate ester with 1% NaOH in MeOH gave the
desired epoxy alcohol 17 in quantitative yield. See: Pet-
tersson-Fasth, H.; Ba¨ckvall, J.-E. J. Org. Chem. 1995, 60,
6091–6096. Epoxide 17 can also be synthesised through
Sharpless asymmetric epoxidation7a in 84% yield and 90%
MHz, CDCl3): l 19.3, 26.8 (×3), 46.2, 64.1, 70.3, 73.1,
116.6, 127.4 (×7), 128.4 (×2), 129.5 (×2), 133.7 (×2), 135.6
(×4), 137.3, 138.5; HR EIMS m/z 430.2317 (calcd
430.2328 for C28H34O2Si).
(S)-3: [h]D −3.2 (c=1.0, CHCl3); 1H NMR (400 MHz,
CDCl3): l 1.08 (9H, s, (CH3)3C-Si), 2.14 (1H, m, H-2),
2.68 (1H, bs, -OH), 3.62 (1H, dd, J=9.3, 6.7 Hz,
-CHHOBn), 3.66 (1H, dd, J=9.3, 5.9 Hz, -CHHOBn),
3.80–3.85 (4H, m, -CH2OTBDPS and -CH2OH), 4.51
(2H, s, -CH2Ph), 7.30–7.45 (11H, m, C6H5-), 7.68 (4H, m,
C6H5-). 13C NMR (100 MHz, CDCl3): l 19.1, 26.8 (×3),
43.2, 63.4, 64.0, 70.0, 73.3, 127.6 (×7), 128.3 (×2), 129.7
(×2), 133.2 (×2), 135.5 (×4), 138.0; HR EIMS m/z
434.2265 (calcd 434.2277 for C27H34O3Si).
1
e.e. (Mosher’s esters H NMR analyses).8 It is possible to
improve its enantiomeric purity (e.e.>98%) through
recrystallisation of its 4-nitrobenzoate and subsequent
hydrolysis.
18. Van Hijfte, L.; Little, R. D. J. Org. Chem. 1985, 50,
3942–3943. Compound 21 is often contaminated by a
30–40% of the bis-benzyl ether.
19. Ozonolysis performed on batches containing less than
40–50 mg of 21 resulted in lower yields. When small
amounts of 4 are requested, it is more convenient to
obtain it by oxidation of the parent alcohol. Banfi, L.;
Guanti, G.; Narisano, E. Tetrahedron 1993, 49, 7385–
7392.
(S)-4: [h]D 8.3 (c=0.8, CHCl3); 1H NMR (400 MHz,
CDCl3): l 1.05 (9H, s, (CH3)3C-Si), 2.78 (1H, m, H-2),
3.82 (1H, dd, J=9.4, 6.2 Hz, -CHHOBn), 3.90 (1H, dd,
J=9.4, 5.9 Hz, -CHHOBn), 4.04 (1H, dd, J=10.4, 2.6
Hz, -CHHOTBDPS), 4.07 (1H, dd, J=10.4, 5.4 Hz,
-CHHOTBDPS), 4.47 (2H, s, -CH2Ph), 7.30–7.45 (11H,
m, C6H5-), 7.66 (4H, m, C6H5-); 13C NMR (100 MHz,
CDCl3): l 19.1, 26.8 (×3), 54.5, 60.1, 65.8, 73.3, 127.5
(×3), 127.7 (×4), 128.3 (×2), 129.7 (×2), 133.0 (×2), 135.5
(×4), 138.0, 202.6; HR EIMS m/z 432.2117 (calcd
432.2121 for C27H32O3Si).
20. Selected data for compounds are as follows: 16: [h]D
−17.5 (c=1.0, CHCl3); 1H NMR (400 MHz, CDCl3): l
1.07 (9H, s, (CH3)3C-Si), 2.27 (1H,bs, -OH), 2.55 (1H, m,
H-2), 3.70–3.83 (4 H, m, -CH2OH and -CH2OTBDPS),
5.11 (1 H, dd, J=17.7, 1.0 Hz, CHHꢀCH-), 5.13 (1H, dd,
J=10.3, 1.0 Hz, CHHꢀCH-), 5.69 (1H, m, CH2ꢀCH-),
13
21. Herscovici, J.; Antonakis, K. J. Chem. Soc. Chem.
Comm. 1980, 561–562.
7.43 (6H, m, C6H5-), 7.68 (4H, m, C6H5-);
C NMR
(100 MHz, CDCl3): l 19.1, 26.8 (×3), 47.6, 64.7, 66.0,
117.6, 127.7 (×4), 129.8 (×2), 133.1 (×2), 135.5 (×4),
135.8; HR EIMS m/z 340.1859 (calcd 340.1837 for
C21H28O2Si).
1
22. 400 MHz H NMR Mosher’s esters analysis, using C6D6
as solvent, on the alcohol derived from the NaBH4
reduction of (S)-4, showed that no racemisation occurred
during the oxidation and/or the work-up processes. The
only other method known that avoids racemisation is a
modification of the Swern oxidation.19
1
Compound 21: [h]D −5.1 (c=1.0, CHCl3); H NMR (400
MHz, CDCl3): l 1.03 (9H, s, (CH3)3C-Si), 2.58 (1H, m,
H-2), 3.55 (1H, dd, J=9.0, 6.1 Hz, -CHHOBn), 3.65 (1H,
.