ACS Applied Materials & Interfaces
Research Article
(16) Lv, S.; Li, Y.; Zhang, K.; Lin, Z.; Tang, D. Carbon Dots/g-C3N4
Nanoheterostructures-Based Signal-Generation Tags for Photoelec-
trochemical Immunoassay of Cancer Biomarkers Coupling with
Copper Nanoclusters. ACS Appl. Mater. Interfaces 2017, 9, 38336−
38343.
(17) Zhang, L.; Han, F. Protein Coated Gold Nanoparticles as
Template for the Directed Synthesis of Highly Fluorescent Gold
Nanoclusters. Nanotechnology 2018, 29, 165702.
(18) Halawa, M. I.; Gao, W.; Saqib, M.; Kitte, S. A.; Wu, F.; Xu, G.
Sensitive Detection of Alkaline Phosphatase by Switching on Gold
Nanoclusters Fluorescence Quenched by Pyridoxal Phosphate. Biosens.
Bioelectron. 2017, 95, 8−14.
AUTHOR INFORMATION
Corresponding Author
86-23-68251225.
■
ORCID
Author Contributions
†These authors contributed equally.
Notes
The authors declare no competing financial interest.
(19) Gao, G.; Zhang, M.; Gong, D.; Chen, R.; Hu, X.; Sun, T. The
Size-effect of Gold Nanoparticles and Nanoclusters in the Inhibition of
Amyloid-β Fibrillation. Nanoscale 2017, 9, 4107−4113.
(20) Xu, M.; Gao, Z.; Wei, Q.; Chen, G.; Tang, D. Label-free Hairpin
DNA-scaffolded Silver Nanoclusters for Fluorescent Detection of Hg2+
Using Exonuclease III-assisted Target Recycling Amplification. Biosens.
Bioelectron. 2016, 79, 411−415.
(21) Han, L.; Xia, J.-M.; Hai, X.; Shu, Y.; Chen, X.-W.; Wang, J.-H.
Protein-Stabilized Gadolinium Oxide-Gold Nanoclusters Hybrid for
Multimodal Imaging and Drug Delivery. ACS Appl. Mater. Interfaces
2017, 9, 6941−6949.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the financial support by Fundamen-
tal Research Funds for the Central Universities
(XDJK2018AC004), Chongqing Research Project of Basic
Research and Frontier Exploration (cstc2018jcyjAX0197),
Fundamental Research Funds for Innovative Project on
Designing and Screening Drug Candidates of Chongqing
(cstc2015zdcy-ztzx120003), and Innovative Research Project
for Postgraduate Students of Chongqing (CYS18099).
(22) Xu, Y.; Liu, Q.; He, R.; Miao, X.; Ji, M. Imaging Laser-Triggered
Drug Release from Gold Nanocages with Transient Absorption
Lifetime Microscopy. ACS Appl. Mater. Interfaces 2017, 9, 19653−
19661.
(23) Zheng, K.; Setyawati, M. I.; Lim, T.-P.; Leong, D. T.; Xie, J.
Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with
Daptomycin. ACS Nano 2016, 10, 7934−7942.
(24) Sangsuwan, A.; Kawasaki, H.; Matsumura, Y.; Iwasaki, Y.
Antimicrobial Silver Nanoclusters Bearing Biocompatible Phosphor-
ylcholine-Based Zwitterionic Protection. Bioconjugate Chem. 2016, 27,
2527−2533.
(25) Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J. Antimicrobial
Gold Nanoclusters. ACS Nano 2017, 11, 6904−6910.
(26) Yang, K.; Liu, M.; Wang, Y.; Wang, S.; Miao, H.; Yang, L.; Yang,
X. Carbon Dots Derived From Fungus for Sensing Hyaluronic Acid and
Hyaluronidase. Sens. Actuators, B 2017, 251, 503−508.
(27) Zeng, R.; Tang, Y.; Zhang, L.; Luo, Z.; Tang, D. Dual-readout
Aptasensing of Antibiotic Residues Based on Gold Nanocluster-
functionalized MnO2Nanosheets with Target-induced Etching Re-
action. J. Mater. Chem. B 2018, 6, 8071−8077.
(28) Ding, H.; Yu, S.-B.; Wei, J.-S.; Xiong, H.-M. Full-Color Light-
Emitting Carbon Dots with a Surface-State-Controlled Luminescence
Mechanism. ACS Nano 2016, 10, 484−491.
(29) Zhou, S.; Zhang, M.; Yang, F.; Wang, F.; Wang, C. Facile
Synthesis of Water Soluble Fluorescent Metal (Pt, Au, Ag and Cu)
Quantum Clusters for the Selective Detection of Fe3+ Ions as Both
Fluorescent and Colorimetric Probes. J. Mater. Chem. C 2017, 5, 2466−
2473.
(30) Yang, X.; Feng, Y.; Zhu, S.; Luo, Y.; Zhuo, Y.; Dou, Y. One-step
Synthesis and Applications of Fluorescent Cu Nanoclusters Stabilized
by L-cysteine in Aqueous Solution. Anal. Chim. Acta 2014, 847, 49−54.
(31) Wang, Y.; Wang, S.; Lu, C.; Yang, X. Three Kinds of DNA-
directed Nanoclusters Cooperating with Graphene Oxide for Assaying
Mucin 1, Carcinoembryonic Antigen and Cancer Antigen 125. Sens.
Actuators, B 2018, 262, 9−16.
(32) Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal Nanoclusters: Novel Probes
for Diagnostic and Therapeutic Applications. Chem. Soc. Rev. 2015, 44,
8636−8663.
(33) Zhang, L.; Wang, E. Metal Nanoclusters: New Fluorescent
Probes for Sensors and Bioimaging. Nano Today 2014, 9, 132−157.
(34) Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red,
Green, and Blue Luminescence by Carbon Dots: Full-Color Emission
Tuning and Multicolor Cellular Imaging. Angew Chem., Int. Ed. 2015,
54, 5360−5363.
REFERENCES
■
(1) Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial
Biofilms: A Common Cause of Persistent Infections. Science 1999, 284,
1318−1322.
(2) Ebrahiminezhad, A.; Barzegar, Y.; Ghasemi, Y.; Berenjian, A.
Green Synthesis And Characterization Of Silver Nanoparticles Using
Alcea Rosea Flower Extract as a New Generation Of Antimicrobials.
Chem. Ind. Chem. Eng. Q. 2017, 23, 31−37.
(3) Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New
Generation of Antimicrobials. Biotechnol. Adv. 2009, 27, 76−83.
(4) Stewart, P. S.; Costerton, J. W. Antibiotic Resistance of Bacteria in
Biofilms. Lancet 2001, 358, 135−138.
(5) Mah, T. F.; O’Toole, G. A. Mechanisms of Biofilm Resistance to
Antimicrobial Agents. Trends Microbiol. 2001, 9, 34−39.
(6) Hancock, R. E. W.; Sahl, H.-G. Antimicrobial and Host-defense
Peptides as New Anti-infective Therapeutic Strategies. Nat. Biotechnol.
2006, 24, 1551−1557.
(7) Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial Activity of
Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev.
Microbiol. 2013, 11, 371−384.
(8) Steenbergen, J. N.; Alder, J.; Thorne, G. M.; Tally, F. P.
Daptomycin: a Lipopeptide Antibiotic for the Treatment of Serious
Gram-positive Infections. J. Antimicrob. Chemother. 2005, 55, 283−288.
(9) Muangsiri, W.; Kirsch, L. E. The Protein-binding and Drug
Release Properties of Macromolecular Conjugates Containing
Daptomycin and Dextran. Int. J. Pharm. 2006, 315, 30−43.
(10) Xiu, Z.-m.; Zhang, Q.-b.; Puppala, H. L.; Colvin, V. L.; Alvarez, P.
J. J. Negligible Particle-Specific Antibacterial Activity of Silver
Nanoparticles. Nano Lett. 2012, 12, 4271−4275.
(11) Ji, H.; Sun, H.; Qu, X. Antibacterial Applications of Graphene-
based Nanomaterials: Recent Achievements and Challenges. Adv. Drug
Delivery Rev. 2016, 105, 176−189.
(12) Godin, B.; Touitou, E. Mechanism of Bacitracin Permeation
Enhancement through the Skin and Cellular Membranes from an
Ethosomal Carrier. J. Controlled Release 2004, 94, 365−379.
(13) Engberg, R. M.; Hedemann, M. S.; Leser, T. D.; Jensen, B. B.
Effect of Zinc Bacitracin and Salinomycin on Intestinal Microflora and
Performance of Broilers. Poult. Sci. 2000, 79, 1311−1319.
(14) Mascher, T.; Margulis, N. G.; Wang, T.; Ye, R. W.; Helmann, J. D.
Cell Wall Stress Responses in Bacillus Subtilis: the Regulatory Network
of the Bacitracin Stimulon. Mol. Microbiol. 2003, 50, 1591−1604.
(15) Zhou, Q.; Lin, Y.; Xu, M.; Gao, Z.; Yang, H.; Tang, D. Facile
Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster
and Its Application for Highly Sensitive Detection of Inorganic
Pyrophosphatase Activity. Anal. Chem. 2016, 88, 8886−8892.
8468
ACS Appl. Mater. Interfaces 2019, 11, 8461−8469