10.1002/anie.201708559
Angewandte Chemie International Edition
COMMUNICATION
favourable. This is consistent with the intuitive expectation of
formation of a more stable diradical C. (d) The most exciting
results relate to the guidance concerning the absence of syn-
head-to-head dimer. This is because the syn-head-to-head
dimer is higher in energy than the accretion of two individual
olefins. The diradical intermediate formed in this pathway prefers
to cleave to two olefins rather than close to form the less stable
dimer. (e) Addition of excited trans-chalcone to a cis one or
excited cis-chalcone to a cis one was found to involve higher
energies. Hence, the computational results favour a pathway
that involves addition of excited trans-chalcone triplet with a
ground state trans-chalcone to give the stable diradical C
(Scheme 2) that closes to yield the isolated anti-head-to-head
dimer as a sole cyclobutane product.
Keywords: visible light catalysis • [2+2] addition • cyclobutanes
• chalcones and cinnamic acid derivatives
[1]
[2]
C. Liebermann, Ber. Dtsch. Chem. Ges. 1877, 10, 2177-2179.
a) Y. Inoue, Chem. Rev. 1992, 92, 741-770; b) T. Bach, J. P. Hehn,
Angew. Chem. Int. Ed. 2011, 50, 1000-1045; c) S. Poplata, A. Troster,
Y. Q. Zou, T. Bach, Chem. Rev. 2016, 116, 9748-9815. c) Q. Liu, L.-Z.
Wu, Nat. Sci. Rev. 2017, 4, 359-380.
[3]
[4]
[5]
V. Ramamurthy, J. Sivaguru, Chem. Rev. 2016, 116, 9914-9993.
W. H. Perkin, J. Chem. Soc. Trans., 1881, 39, 409-452.
a) C. Liebermann, Ber. Dtsch. Chem. Ges. 1895, 28, 1443-1448; b) H.
D. Roth, Angew. Chem. Int. Ed. 1989, 28, 1193-1207.
[6]
[7]
J. Bertram, R. Kürsten, J. Prakt. Chem. 1895, 51, 316-325.
a) F. Toda, K. Tanaka, A. Sekikawa, J. Chem. Soc., Chem. Commun.,
1987, 279-280; b) F. Toda, K. Tanaka, M. Kato, J. Chem. Soc., Perkin
Trans. 1, 1998, 1315-1318.
In conclusion, we report an efficient cost-effective method for
the synthesis of highly energy rich and strained cyclobutanes
from acyclic C=C bonds. Photophysical studies and DFT
calculations revealed that the triplet chalcones and cinnamic
acid derivatives produced by energy transfer from the excited
Ir(ppy)3* are responsible for the formation of cyclobutanes in
highly stereo- and diastereoselective manner, without any extra
additives and directing groups in solution. Adopting to visible
light catalysis methodology, we have overcome the perennial
problem of low yield and low-selectivity of intermolecular [2+2]
dimerization of chalcones and cinnamic acid derivatives in
solution. Observed results provide confidence that our approach
is likely to be general for additional applications.
[8]
[9]
a) V. Ramamurthy, K. Venkatesan, Chem. Rev. 1987, 87, 433-481; b)
S. Devanathan, V. Ramnmurthy, J. Photochem. Photobiol., A:
Chemistry 1987, 40, 67-77; c) V. Ramamurthy, B. Mondal, J.
Photochem. Photobiol. C 2015, 23, 68-102.
a) H. G. Curme, C. C. Natale, D. J. Kelley, J. Phys. Chem. 1967, 71,
767-770. b) R. Telmesani, S. H. Park, T. Lynch-Colameta, A. B. Beeler,
Angew. Chem. Int. Ed. 2015, 54, 11521-11525.
[10] a) J. Du, T. P. Yoon, J. Am. Chem. Soc. 2009, 131, 14604-14605; b) M.
A. Ischay, Z. Lu, T. P. Yoon, J. Am. Chem. Soc. 2010, 132, 8572-8574;
c) M. A. Ischay, M. S. Ament, T. P. Yoon, Chem. Sci. 2012, 3, 2807-
2811; d) E. L. Tyson, E. P. Farney, T. P. Yoon, Org. Lett. 2012, 14,
1110-1113; e) Y.-Q. Zou, S.-W. Duan, X.-G. Meng, X.-Q. Hu, S. Gao,
J.-R. Chen, W.-J. Xiao, Tetrahedron 2012, 68, 6914-6919; f) T. P. Yoon,
ACS Catal. 2013, 3, 895-902; g) J. Du, K. L. Skubi, D. M. Schultz, T. P.
Yoon, Science 2014, 344, 392-396; h) T. R. Blum, Z. D. Miller, D. M.
Bates, I. A. Guzei, T. P. Yoon, Science 2016, 354, 1391-1395; i) M.
Riener, D. A. Nicewicz, Chem Sci. 2013, 4, 2625-2629; j) Q. Liu, F. P.
Zhu, X. L. Jin, X. J. Wang, H. Chen, L. Z. Wu, Chem.-Eur. J. 2015, 21,
10326-10329; k) A. Troster, R. Alonso, A. Bauer, T. Bach, J. Am. Chem.
Soc. 2016, 138, 7808-7811; l) S. Lin, S. D. Lies, C. S. Gravatt, T. P.
Yoon, Org. Lett. 2017, 19, 368-371; m) Z. D. Miller, B. J. Lee, T. P.
Yoon, Angew. Chem. Int. Ed. 2017, 56, 11891-11895; n) X. Huang, T.
R. Quinn, K. Harms, R. D. Webster, L. Zhang, O. Wiest, E. Meggers, J.
Am. Chem. Soc. 2017, 139, 9120-9123.
O
Ph
O
(a)
ν
h
,
Ir(ppy)3
Ph
Ph
Ph
Z-chalcone
E-chalcone
(b)
T
O
O
β
transfer
Energy
Ph
Ph
Ph
Ph
α
E-chalcone
*
Ir(ppy)3
Ir(ppy)3
[11] J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2015, 137, 11254-
11257.
E-chalcone
ν
h
[12] T. Hofbeck, H. Yersin, Inorg. Chem. 2010, 49, 9290-9299.
O
O
D3
D1
O
O
O
O
α α
Ph
Ph
Ph
Ph
Ph
Ph
β
Ph
β
Ph
Ph
Ph
Ph
Ph
D
C
cyclobutane
anti
(
-head-to-head)
Scheme 2. Proposed Mechanism.
Acknowledgements
Financial support from the Ministry of Science and Technology
of China (2013CB834804, 2014CB239402, 2017YFA0206903),
the National Natural Science Foundation of China (21390404,
91427303, 21473227), the Strategic Priority Research Program
of the Chinese Academy of Science (XDB17030400) is gratefully
acknowledged. V. Ramamurthy acknowledges the Chinese
Academy of Sciences for a fellowship and the US National
Science Foundation (CHE-1411458) for its support.
This article is protected by copyright. All rights reserved.