642
C. J. Dinsmore et al. / Bioorg. Med. Chem. Lett. 14 (2004) 639–643
(slope=ꢀ0.25), despite close structural similarity
Ramjit, C. W. Ross III, B.-L. Wan, andM. M. Zrada
for analytical support.
between the two compounds.
The activities of compounds in cell culture were con-
sistent with their in vitro potencies (Table 1). IC50
values determined in an FPTase in-cell enzyme
occupancy assay were generally within 2–4-foldof the
corresponding in vitro inhibition IC50s, indicating high
cell permeability. The minimal concentrations required
to detect the unprocessed form of the specifically ger-
anylgeranylatedprotein Rap1a roughly correlatedwith
the in vitro GGPTase-I IC50s. In a more detailed study,
the relative FPTase andGGPTase-I inhibition activities
of FTI-GGTIs 3o and 3q were assessedin a uniform cell
background, and compared to the activities of 1 and 2
(Table 2). As detailed elsewhere,5 1 inhibitedthe pro-
cessing of farnesylatedandgeranylgeranylatedproteins
(HDJ2 andRap1a, respectively), andwas therefore able
to suppress the prenylation of Ki-Ras (entry 1). The
more potent FTI 2 was unable to block Ki-Ras pre-
nylation due to insufficient GGTase-I inhibition (entry
2). However, the addition of high concentration of a
potent GGTI provided the necessary inhibition to
observe unprenylatedKi-Ras (entry 3). This experiment
indicated the maximum achievable level of Ki-Ras inhi-
bition by a dual FTI-GGTI with a given level of FPTase
potency, andthus the optimal balance of these enzyme
activities for Ki-Ras inhibition (Ki-Ras/HDJ2 EC50
ratio ꢄ47).5 Compound 3o (entry 4) was shown to
be more potent at inhibiting the prenylation of all
three proteins relative to 1, andis a closely balanced
FTI-GGTI (ratio ꢄ89). Compound 3q is also more
potent than 1, but is slightly excessive in its FTI activity
(entry 5).
References and notes
1. Gibbs, J. B.; Oliff, A.; Kohl, N. E. Cell 1994, 77, 175.
2. (a) Rowell, C. A.; Kowalczyk, J. J.; Lewis, M. D.; Garcia,
A. M. J. Biol. Chem. 1997, 272, 14093. (b) Whyte, D. B.;
Kirschmeier, P.; Hockenberry, T. N.; Nunez-Oliva, I.;
James, L.; Catino, J. J.; Bishop, W. R.; Pai, J.-K. J. Biol.
Chem. 1997, 272, 14459.
3. (a) Ayral-Kaloustain, S.; Salaski, E. J. Curr. Med. Chem.
2002, 9, 1003. (b) Singh, S. B.; Lingham, R. B. Curr. Opin.
Drug Discov. Dev. 2003, 5, 225.
4. (a) Ashar, H. R.; James, L.; Gray, K.; Carr, D.; Black, S.;
Armstrong, L.; Bishop, W. R.; Kirschmeier, P. J. Biol.
Chem. 2000, 275, 30451. (b) Prendergast, G. C.; Oliff, A.
Semin. Cancer Biol. 2000, 10, 443.
5. Lobell, R. B.; Omer, C. A.; Abrams, M. T.; Bhim-
nithwala, H. G.; Brucker, M. J.; Buser, C. A.; Davide,
J. P.; deSolms, S. J.; Dinsmore, C. J.; Ellis-Hutchings,
M. S.; Kral, A. M.; Liu, D.; Lumma, W. C.; Machotka,
S. V.; Rands, E.; Williams, T. M.; Graham, S. L.; Hart-
man, G. D.; Oliff, A. I.; Heimbrook, D. C.; Kohl, N. E.
Cancer Res. 2001, 61, 8758.
6. Dinsmore, C. J.; Bogusky, M. J.; Culberson, J. C.; Berg-
man, J. M.; Homnick, C. F.; Zartman, C. B.; Mosser,
S. D.; Schaber, M. D.; Robinson, R. G.; Koblan, K. S.;
Huber, H. E.; Graham, S. L.; Hartman, G. D.; Huff, J. R.;
Williams, T. M. J. Am. Chem. Soc. 2001, 123, 2107.
7. Dinsmore, C. J.; Bell, I. M. Curr. Topics Med. Chem.
2003, 3, 1075.
8. (a) Huber, H. E.; Robinson, R. G.; Watkins, A.; Nahas,
D. D.; Abrams, M. T.; Buser, C. A.; Lobell, R. B.;
Patrick, D.; Anthony, N. J.; Dinsmore, C. J.; Graham,
S. L.; Hartman, G. D.; Lumma, W. C.; Williams, T. M.;
Heimbrook, D. C. J. Biol. Chem. 2001, 276, 24457. (b)
Buser, C. A.; Dinsmore, C. J.; Fernandes, C.; Greenberg,
I.; Hamilton, K.; Mosser, S. D.; Walsh, E. S.; Williams,
T. M.; Koblan, K. S. Anal. Biochem. 2001, 290, 126.
9. (a) Recent reports of dual FTI-GGTIs: Bergman, J. M.;
Abrams, M. T.; Davide, J. P.; Greenberg, I. B.; Robinson,
R. G.; Buser, C. A.; Huber, H. E.; Koblan, K. S.; Kohl,
N. E.; Lobell, R. B.; Graham, S. L.; Hartman, G. D.;
Williams, T. M.; Dinsmore, C. J. Bioorg. Med. Chem.
Lett. 2001, 11, 1411. (b) Nguyen, D. N.; Stump, C. A.;
Walsh, E. S.; Fernandes, C.; Davide, J. P.; Ellis-Hutch-
ings, M.; Robinson, R. G.; Williams, T. M.; Lobell, R. B.;
Huber, H. E.; Buser, C. A. Bioorg. Med. Chem. Lett.
2002, 12, 1269. (c) Tucker, T. J.; Abrams, M. T.; Buser,
C. A.; Davide, J. P.; Ellis-Hutchings, M.; Fernandes, C.;
Gibbs, J. B.; Graham, S. L.; Hartman, G. D.; Huber,
H. E.; Liu, D.; Lobell, R. B.; Lumma, W. C.; Robinson,
R. G.; Sisko, J. T.; Smith, A. M. Bioorg. Med. Chem.
Lett. 2002, 12, 2027. (d) deSolms, S. J.; Ciccarone, T. M.;
MacTough, S. C.; Shaw, A. W.; Buser, C. A.; Ellis-
Hutchings, M.; Fernandes, C.; Hamilton, K. A.; Huber,
H. E.; Kohl, N. E.; Lobell, R. B.; Robinson, R. G.; Tsou,
N. N.; Walsh, E. S.; Graham, S. L.; Beese, L. S.; Taylor,
J. S. J. Med. Chem. 2003, 46, 2973.
A hypothesis for the binding mode of the macrocyclic
dual FTI-GGTI 3o in FPTase (Fig. 2) was derived from
molecular modeling studies based on published X-ray
crystal structures of relatedmacrocyclic inhibi-
12
.
.
tor FPTase FPP ternary complexes. As in related
complexes,12b the imidazole moiety is ligated to zinc, the
cyanophenyl group is stackedagainst the isoprenoid
chain of FPP, andthe benzylpiperazinone portion is in
contact with key hydrophobic residues. Notably, the
cyclohexylethyl group is angledtowarda large cavity in
the active site. Given that the mechanism of GGPTase-I
inhibition by 3o is not competitive with respect to
GGPP, it is possible that the inhibitory binding mode of
3o in GGPTase-I is qualitatively similar to the FPTa-
.
.
se 3o FPP complex.
In summary, several of the macrocyclic pre-
nyltransferase inhibitors prepared in this study demon-
strate dual FPTase and GGPTase-I inhibition.
Compound 3o potently inhibits both enzymes in cell
culture with relative activities that are near-optimally
balancedfor the inhibition of Ki-Ras prenylation.
10. Dinsmore, C. J.; Bergman, J. M.; Bogusky, M. J.; Cul-
berson, J. C.; Hamilton, K. A.; Graham, S. L. Org. Lett.
2001, 3, 865.
11. (a) Moores, S. L.; Schaber, M. D.; Mosser, S. D.; Rands,
E.; O’Hara, M. B.; Garsky, V. M.; Marshall, M. S.;
Pompliano, D. L.; Gibbs, J. B. J. Biol. Chem. 1991, 266,
14603. (b) Lobell, R.; Davide, J. P.; Kohl, N.; Burns, D.;
Eng, W.-S.; Gibson, R. J. Biomol. Screening 2003, 8, 430.
Acknowledgements
The authors wish to thank K. D. Anderson, P. A.
Ciecko-Steck, A. B. Coddington, G. M. Smith, H. G.