Page 3 of 4
Organic & Biomolecular Chemistry
DOI: 10.1039/C3OB41774C
bond on the triazole ring.6h,11 Thus, to evaluate the
chemoselectivity of this copper catalyzed reaction, excess
amounts of nitrile nucleophiles (5 equiv.) were applied. As
extracted with EtOAc. The solvent was removed in vacuo
and the residue was purified by column chromatography
on silica gel using petroleum ether/ethyl acetate (3:1) as
shown in Scheme 2B, no bromotriazole coupling products 50 eluent to provide 3a as white solid (92% yield).
were obtained. The designated Ullmann aryl coupling
5
product 3u was obtained exclusively. Notably, the triazole
C-Br bond can be potentially converted into other
functional groups through C-Br activation. Thus, the
excellent chemoselectivity observed in these copper
10 coupling conditions provided a highly effective and
practical approach to diverse TAIQ derivatives.
Notes and references
a Key Laboratory for Green Chemical Process of Ministry of Education,
55 Wuhan Institute of Technology, Wuhan 430073, P. R. China, E-mail:
b
C. Eugene Bennett Department of Chemistry, West Virginia University,
Morgantown, WV 26506, USA. Fax: 1-304-293-4904; Tel:1-304-293-
Scheme 2.
(A)
Ph
Ph
60 † Electronic Supplementary Information (ESI) available: experimental
1
details, X-ray measurement and HNMR, 13NMR for all compounds. See
N
N
N
CuI, 1,10-phenanthroline
N
N
N
t-BuO2C
CN
+
K2CO3, DMSO, 80 oC, Ar
10h
CN
Br
1. (a) L. D. Quin, J. Tyrell, Fundamentals of Heterocyclic Chemistry:
1.2 eq
CO2Bu-t
4
5
10 h, 20% conversion,18% yield
65
70
Importance in Nature and in the Synthesis of Pharmaceuticals;
Wiley: 2010; ISBN:978-0-470-56669-5; (b) P. J. Crowley, in:
Comprehensive Heterocyclic Chemistry, (Eds.: A. R. Katritzky, C.
W. Rees), Pergamon, New York, 1984. (c) J. K. Landquist, in:
Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W.
Rees), Pergamon, New York, 1984.
In comparison: 1a, identical conditions, 1h, 90% convn, 78% yield
Br
(B)
Br
N
NH
N
N
CuI, 1,10-phenanthroline
N
N
t-BuO2C
CN
+
K2CO3, DMSO, 80 oC, Ar
1h
NH2
Br
2. (a) S. G. Agalave, S. R. Maujan, V. S. Pore. Chem. Asian J. 2011, 6,
2696; (b) A. Carta, M. Palomba, G. Paglietti, P. Molicotti, B.
Paglietti, S. Cannas, S. Zanetti. Bioorg. Med. Chem. Lett. 2007, 17,
4791; (c) X. Su, M. D. Liptak, I. Aprahamian, Chem. Commun. 2013,
49, 4160; (c)
CO2Bu-t
3u
5.0 eq
1a
100% convn, 92% yield
15
75
In conclusion, we report herein a simple and efficient
3. For a review: (a) B. Chattopadhyay, V. Gevorgyan, Angew. Chem.,
Int. Ed. 2012, 51, 862; For some examples: (b) J. E. Spangler, H. M.
L. Davies, J. Am. Chem. Soc. 2013, 135, 6802; (c) S. Chuprakov, S.
W. Kwok, V. V. Fokin, J. Am. Chem. Soc. 2013, 135, 4652; (d) S.
Liu, J. Sawickj, T. G. Driver, Org. Lett. 2012, 14, 3744; (e) B.
Chattopadhyay, V. Gevorgyan, Org. Lett. 2011, 13, 3746; (f) T.
Miura, M. Yamauchi, A. Kosaka, M. Murakami, Angew. Chem., Int.
Ed. 2010, 49, 4955; (g) N. Grimster, L. Zhang, V. V. Fokin, J. Am.
Chem. Soc. 2010, 132, 2510; (h) T. Miura, M. Yamauchi, M.
Murakami, Chem. Commun. 2009, 1470; (i) I. Nakamura, T. Nemoto,
N. Shiraiwa, M. Terada. Org. Lett. 2009, 11, 1055; (j) T. Horneff, S.
Chuprakov, N. Chernyak, V. Gevorgyan, V. V. Fokin, J. Am. Chem.
Soc., 2008, 130, 14972; (k) T. Miura, M. Yamauchi, M. Murakami,
Org. Lett. 2008, 10, 3085. (l) S. Chuprakov, Frank, W. Hwang, V.
Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 4757.
cascade process for the synthesis of 5-amino-
[1,2,3]triazolo[5,1-a]isoquinoline (TAIQ) derivatives in
good to excellent yields under mild conditions. To the best
80
20 of our knowledge, this is the first example of the TAIQ
synthesis using the readily available 1,2,3-triazoles as
starting materials. The NH-triazole directed-annulation
approach allowed further modification for synthesis of
other N-fused hetereocycles. The fluorescence activities
25 along with the metal coordination ability of these new
TAIQ derivatives are currently under investigation and will
be reported in due course.
85
90
4. (a) H. Duan, S, Sengupta, J. L. Petersen, N. G. Akhmedov, X. Shi, J.
Am. Chem. Soc. 2009, 131, 12100; (b) Y. Chen, W, Yan, N.G.
Akhmedov, X. Shi, Org. Lett, 2010, 12, 344; (c) Y. Chen, D. Wang,
J. L. Petersen, X. Shi, Chem. Commun. 2010, 46, 6147; (d) W. Yan,
X, Ye, N. G. Akhmedov, J. L. Petersen, X. Shi, Org. Lett. 2012, 14,
2358; (e) W. Gao, W. Yan, R. Cai, K. Williams, A. Salas, L. Wojtas,
X. Shi, S. Ma, Chem. Commun. 2012, 48, 8898
The authors are grateful to National Natural Science
30 Foundation of China (21000276), the Scientific Research
Foundation for the Returned Overseas Chinese Scholars,
and Wuhan Youth Chenguang Program of Science and
Technology (201271031374) for financial support.
95
5. See recent examples: (a) B. Abarca, R. Ballesteros, R. Ballesteros-
Garrido, F. Colobert, F. R. Leroux, Tetrahedron. 2008, 64, 3794; (b)
B. Abarca, I. Alkorta, R. Ballesteros, F. Blanco, M. Chadlaoui, J.
Elguero, F. Mojarrad, Org. Biomol. Chem. 2005, 3, 3905; (c) X. Jing,
Y.-G. Yin, P. Mei, Inorg. Chem. Commun. 2007, 10, 1168; (d) M. S.
Raghavendra, Y. Lam, Tetrahedron. Lett. 2004, 45, 6129.
6. (a) K. G. Guggenheim, H. Toru, M. J. Kurth, Org. Lett. 2012, 14,
3732; (b) Q. Cai, J. Yan, K. Ding, Org. Lett. 2012, 14, 3332; (c) J.
Yan, F. Zhou, D. Qin, T. Cai, K. Ding, Q. Cai, Org. Lett. 2012, 14,
1262; (d) R. K. Arigela, A. K. Mandadapu, S. K. Sharma, B. Kumar,
B. Kundu, Org. Lett. 2012, 14, 1804; (e) F. Fang, M. Vogel, J. V.
Hines. S. C. Bergmeier, Org. Biomol. Chem. 2012, 10, 3080; (f) J. R.
Donald, S. F. Martin, Org. Lett. 2011, 13, 852; (g) Y. Hu, J. Hu, X.
Wang, L. Guo, X. Shu, Y. Niu, Y. Liang, Tetrahedron. 2010, 66, 80;
(h) L. Ackermann, R. Jeyachandran, H. K. Potukuchi, P. Novák, L.
Büttner. Org. Lett. 2010, 10, 2056; (i) V. Fiandanese, G. Marchese,
A. Punzi, F. Iannone, G. G. Rafaschieri, Tetrahedron. 2010, 66, 8846;
Experimental
100
105
110
35 General Information
Procedure for Synthesis of Compounds 3a
Substituted 5-(2-bromophenyl)-1H-1,2,3-triazole 1a (0.5
mmol) and CuI (0.05 mmol, 10 mg), K2CO3 (0.75 mmol,
104 mg), 1,10-phenanthroline (0.1 mmol, 18 mg) were
40 added to a pear-shaped Schlenk tube charged with a
magnetic stirrer. The tube was evacuated and backfilled
with argon and then DMSO (2.0 mL) and ethyl 2-
cyanoacetate (0.6 mmol) were added to the tube under a
stream of argon. The tube was sealed and the mixture was
45 stirred at 80 °C under argon atmosphere. After completion
of the reaction, the mixture was washed with water and
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3