1634
X. Yan˜ez et al. / Tetrahedron Letters 44 (2003) 1631–1634
Soc. 1995, 117, 5371; (b) Shilov, A. E.; Shul’pin, G. B.
Chem. Rev. 1997, 97, 2879.
2. (a) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabw, Y. J.
Org. Chem. 1990, 55, 1286; (b) Marder, T. B.; Roe, D. C.;
Milstein, D. Organometallics 1988, 7, 1451; (c) Vora, K.
P.; Lochow, C. F.; Miller, R. G. J. Organomet. Chem.
1980, 192, 257.
3. (a) Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis;
Wiley Interscience: New York, 1992; (b) Colquhoun, H.
M.; Thomson, D. J.; Twigg, M. V. Carbonylation: Direct
Synthesis of Carbonyl Compounds; Plenum: New York,
1991.
Figure 2.
4. (a) Barnhart, R. W.; Bosnich, B. Organometallics 1995,
14, 4343; (b) Barnhart, R. W.; McMorran, D. A.;
Bosnich, B. Chem. Commun. 1997, 589; (c) Bosnich, B.
Acc. Chem. Rev. 1998, 31, 667.
5. (a) Jun, C.-H.; Lee, H.; Hong, J.-B. J. Org. Chem. 1997,
62, 1200; (b) Jun, C.-H.; Hong, J.-B.; Lee, H. Synlett
1999, 1, 1.
with re-addition of the rhodium complex, for at least
ten consecutive runs without a significant loss in activ-
ity. The easy separation of MK10 from the reaction
products and its reutilization, becomes an additional
advantage to the use of organic acids as co-catalysts.
6. (a) Suggs, J. W. J. Am. Chem. Soc. 1979, 101, 489; (b)
Albitani, A.; Arz, C.; Pregosin, P. S. J. Organomet.
Chem. 1987, 335, 379.
7. (a) Jun, C.-H.; Lee, D.-Y.; Lee, H.; Hong, J.-B. Angew.
Chem., Int. Ed. Engl. 2000, 39, 3070; (b) Jun, C.-H.;
Hong, J.-B. Org. Lett. 1999, 1, 887.
8. (a) Uriz, P.; Serra, M.; Salagre, P.; Castillon, S.; Claver,
C.; Fernandez, E. Tetrahedron Lett. 2002, 43, 1673; (b)
Uriz, P.; Serra, M.; Salagre, P.; Castillon, S.; Claver, C.;
Fernandez, E. P200001396, 2000; (c) Uriz, P.; Serra, M.;
Salagre, P.; Castillon, S.; Claver, C.; Fernandez, E.
EP1160239A2, 2001.
The results show that intermolecular hydroacylation is
efficiently carried out using MK10 as acidic co-catalyst.
This reduces the number of reactants required and the
intermediates formed, improving the atom economy of
the process. In addition, the co-catalyst can be easily
separated from the products and reused for a significant
number of consecutive runs, without affecting the activ-
ity. Further work on the extension of this methodology
towards other aldehydes and olefins (including not aro-
matic aldehydes) is in progress.
9. (a) Balogh, M.; Laszlo, P. Organic Chemistry using Clays;
Springer Verlag: New York, 1993; (b) Thomas, J. M.
Angew. Chem., Int. Ed. Engl. 1994, 33, 913; (c)
Barthomeuf, D. Catal. Rev. 1996, 38, 521; (d) Holderich,
W. F. Comprehensive Supramolecular Chemistry; Perga-
mon Press: Oxford, 1996.
Acknowledgements
This work was supported by Ministerio de Ciencia y
Tecnologia (BQU2001-0656). We thank the University
of Pamplona (Colombia) for leave (to X.Y.).
10. (a) Varma, R. S.; Dahiya, R.; Kumar, S. Tetrahedron
Lett. 1997, 38, 2039; (b) Dewan, S. K.; Varma, U.; Malik,
S. D. J. Chem. Res. (S) 1995, 21.
References
11. Jun, C.-H.; Huh, C.-N.; Na, S.-J. Angew. Chem., Int. Ed.
Engl. 1998, 37, 145.
1. (a) Trost, B. M.; Imi, K.; Davies, I. W. J. Am. Chem.