2 S. Huneck, J. Schmidt and A. Porzel, Z. Naturforsch., B: Chem. Sci.,
1994, 49, 561.
3 S. Huneck, J. Jakupovic and G. Follmann, Z. Naturforsch., B: Chem.
Sci., 1991, 46, 969.
4 S. Huneck, Phytochemistry, 1972, 11, 1489.
5 S. Huneck, A. Mathey and G. Trotet, Z. Naturforsch., B: Anorg.
Chem. Org. Chem., 1967, 22, 1367.
6 S. Huneck and G. Follmann, Ber. Dtsch. Bot. Ges., 1968, 81, 125
(Chem. Abstr., 1969, 70, 35025j).
7 S. Huneck and G. Follmann, Z. Naturforsch., B: Anorg. Chem. Org.
Chem., 1967, 22, 1369.
8 S. Huneck, G. Follmann, A. W. William and G. Trotet, Z.
Naturforsch., B: Anorg. Chem. Org. Chem., 1967, 22, 671.
9 S. Huneck and G. Follmann, Z. Naturforsch., B: Anorg. Chem. Org.
Chem., 1967, 22, 1185.
10 V. Subba Rao and T. R. Seshadri, Proc. Indian Acad. Sci., Sect. A,
1940, 12, 466.
11 V. Subba Rao and T. R. Seshadri, Proc. Indian Acad. Sci., Sect. A,
1941, 13, 199.
12 S. Huneck, M. A. Morales and K. Kalb, J. Hattori Bot. Lab., 1987,
62, 331 (Chem. Abstr., 1988, 108, 19191h).
13 W. Quilhot, J. A. Garbarino and V. Gambaro, J. Nat. Prod., 1983,
46, 593.
14 W. Quilhot, J. Redon, E. Zuniga and S. Vidal, Phytochemistry, 1975,
14, 1865.
15 S. Huneck, Lichenologist, 1980, 12, 239.
16 S. Huneck, Phytochemistry, 1972, 11, 1493.
17 J. P. Devlin, C. P. Falshaw, W. D. Ollis and R. E. Wheeler, J. Chem.
Soc. (C), 1971, 1318.
18 C. H. Fox and S. Huneck, Phytochemistry, 1969, 8, 130.
19 G. Kennedy, J. Breen, J. Keane and T. J. Nolan, Sci. Proc. R. Dublin
Soc., 1937, 21, 557.
20 O. Hesse, J. Prakt. Chem., 1898, 58, 497.
21 K. Soviar, Acta Fac. Pharm. Univ. Comenianae, 1971, 20, 27 (Chem.
Abstr., 1972, 76, 123969z).
22 K. Soviar, M. Bachrata, D. Georch and L. Krasnec, Farm. Obz.,
1967, 36, 161 (Chem. Abstr., 1969, 70, 44812r).
23 S. Huneck and G. Follmann, Z. Naturforsch., B: Anorg. Chem. Org.
Chem., 1964, 19, 658.
24 B. Åkermark, Acta Chem. Scand., 1962, 16, 599.
25 B. Åkermark, H. Erdtman and C. A. Wachtmeister, Acta Chem.
Scand., 1959, 13, 1855.
mixture was filtered through Celite and the filtrate was concen-
trated in vacuo. The silica gel column purification of the residue
using petroleum spirit–ethyl acetate (9 : 1) gave succinimide 8
(1.05 g, 95%), mp 67–68 ЊC (from methanol); IR (Nujol) νmax
1774, 1709, 1516, 1470 cmϪ1 1H NMR (CDCl3, 200 MHz)
;
δH 0.91 (t, J 6 Hz, 3 H), 1.29 (br s, 20 H), 1.35 (d, J 6 Hz, 3 H),
1.60–1.95 (m, 2 H), 2.39 (s, 3 H), 2.85–3.20 (m, 2 H), 7.16 (d, J 8
Hz, 2 H), 7.28 (d, J 8 Hz, 2 H); 13C NMR (CDCl3, 50 MHz)
δC 11.6, 13.9, 21.0, 22.6, 26.5, 27.6, 29.3, 29.5 (6 × CH2), 31.8,
38.6, 43.8, 126.1, 129.6, 138.2, 138.4, 178.4, 179.3; MS m/z 371
(Mϩ, 24%), 265 (4), 216 (29), 203 (80), 175 (7), 134 (12), 107
(20), 91 (12), 69 (18) (Calc. for C24H37NO2: C, 77.58; H, 10.03;
N, 3.77. Found: C, 77.76; H, 10.14; N, 3.53%). Similarly, on
catalytic hydrogenation, anhydride 6 (0.56 g, 2 mmol) furnished
( )-erythro-roccellic acid 9 (0.36 g, 60%).
( )-erythro-Roccellic acid 9
Succinimide 8 (0.74 g, 2 mmol) was dissolved in trifluoroacetic
acid–conc. hydrochloric acid (1 : 1, 15 mL) and the reaction
mixture was refluxed for 48 h. The reaction mixture was kept
aside at rt for 12 h and the white precipitate of roccellic acid was
filtered in vacuo to obtain 9 (0.59 g, 98%) (erythro : threo =
93 : 7, proved by 1H NMR). The mixture of erythro- and threo-
roccellic acid (0.50 g, 93 : 7) was recrystallised from acetone
(30 mL) to obtain pure ( )-erythro-roccellic acid 9 (0.40 g,
80%), mp 141–142 ЊC (from acetone); IR (Nujol) νmax 1693,
1
1464, 1271, 1202 cmϪ1; H NMR (pyridine-d5, 500 MHz) δH
0.86 (t, J 5 Hz, 3 H), 1.20 (br s, 16 H), 1.30–1.45 (m, 2 H), 1.62
(d, J 10 Hz, 3 H), 1.53–1.75 (m, 2 H), 1.92–2.03 (m, 1 H), 2.10–
2.23 (m, 1 H), 3.17–3.33 (m, 2 H); 13C NMR (pyridine-d5, 125
MHz) δC 14.2, 16.2, 22.8, 28.2, 29.5, 29.8 (6 × CH2), 31.7, 32.0,
43.4, 50.0, 177.0, 177.7; MS m/z 282 (Mϩ, 1%), 254 (2), 227 (7),
209 (3), 170 (10), 156 (17), 132 (35), 97 (33), 83 (28), 69 (54)
(Calc. for C17H32O4: C, 67.96; H, 10.73. Found: C, 67.85; H,
10.65%).
26 S. Huneck, U. Himmelreich, J. Schmidt, J. Volker and U. Zeybek,
Z. Naturforsch., B: Chem. Sci.,, 1994, 49, 1561.
27 B. Åkermark, Acta Chem. Scand., 1970, 24, 1456.
28 V. C. Barry and P. A. McNally, Nature, 1945, 156, 48.
29 V. C. Barry, J. G. Belton, R. M. Kelly and D. Twomey, Nature, 1950,
166, 303.
30 F. M. Pereira, J. de sa and S. S. Bhatnagar, Indian J. Pharm., 1953,
15, 287.
31 C. F. Garcia, G. A. Espinoza, S. G. Coltantes, V. V. Rios and P. W.
Quilhot, J. Hattori Bot. Lab., 1982, 53, 443 (Chem. Abstr., 1982, 97,
212854j).
32 P. W. Quilhot, V. J. Thompson, B. S. Vidal and P. G. Campos,
J. Hattori Bot. Lab., 1981, 49, 273 (Chem. Abstr., 1981, 95, 1773c).
33 S. Huneck and K. Schreiber, Phytochemistry, 1972, 11, 2429.
34 K. Schreiber, Environ. Qual. Saf. Suppl., 1975, 3, 483 (Chem. Abstr.,
1976, 85, 105260t).
35 J. P. Devlin, W. D. Ollis and J. E. Thorpe, J. Chem. Soc., Perkin
Trans. 1, 1975, 846.
36 W. McD. Armstrong, Proc. R. Ir. Acad., Sect. B, 1956, 58, 71.
37 I. K. Iskandar and J. K. Syers, J. Soil Sci., 1972, 23, 255.
38 B. Åkermark and N. G. Johansson, Ark. Kemi, 1967, 27, 1.
39 V. C. Barry and D. Twomey, Proc. R. Ir. Acad., Sect. B, 1947, 51,
137.
Dimethyl ester of ( )-erythro-roccellic acid 10
A solution of ( )-erythro-roccellic acid 9 (0.30 g, 1 mmol) in
ether (10 mL) was treated with a solution of diazomethane in
ether at 0 ЊC, until the complete consumption of the starting
material (2 h). The excess of diazomethane was quenched with
acetic acid and the reaction mixture was concentrated in vacuo.
Silica gel column chromatographic purification of the residue
using petroleum spirit and ethyl acetate mixture (9 : 1) gave
pure 10 as a thick oil (0.32 g, 98%); IR (neat) νmax 1740, 1464,
1
1435, 1195 cmϪ1; H NMR (CDCl3, 200 MHz) δH 0.87 (t, J 6
Hz, 3 H), 1.13 (d, J 6 Hz, 3 H), 1.23 (br s, 18 H), 1.30–1.50 (m,
2 H), 1.50–1.75 (m, 2 H), 2.58–2.78 (m, 2 H), 3.68 (s, 3 H), 3.69
(s, 3 H); 13C NMR (CDCl3, 75 MHz) δC 14.0, 15.1, 22.7, 27.5,
29.4, 29.6 (6 × CH2), 30.7, 31.9, 42.1, 48.6, 51.4, 51.7, 174.6,
175.3; MS m/z 328 (Mϩ, 1%), 298 (24), 267 (7), 242 (100), 184
(16), 170 (18), 160 (88), 128 (66), 111 (17), 101 (32), 91 (68), 81
(29), 69 (68), 55 (92) (Calc. for C19H36O4: C, 69.47; H, 11.04.
Found: C, 69.54; H, 11.23%).
40 S. B. Desai and N. P. Argade, J. Org. Chem., 1997, 62, 4862.
41 E. Hedaya and S. Theodoropulos, Tetrahedron, 1968, 24, 2241.
42 S. Mangaleswaran and N. P. Argade, J. Chem. Soc., Perkin Trans. 1,
2000, 3290.
43 S. Mangaleswaran and N. P. Argade, J. Org. Chem., 2001, 66, 5259.
44 H. Muramatsu, H. Kawano, Y. Ishii, M. Saburi and Y. Uchida,
J. Chem. Soc., Chem. Commun., 1989, 769.
Acknowledgements
S. M. thanks C.S.I.R., New Delhi, for the award of a fellowship.
We thank Dr K. N. Ganesh, Head of the Division of Organic
Chemistry (Synthesis), for constant encouragement.
45 M. Kitamura, M. Tokunaga and R. Noyori, J. Org. Chem., 1992, 57,
4053.
References
46 M. V. Berg, A. J. Minnaard, E. P. Schudde, J. V. Esch, A. H. M. Vries,
J. G. Varies and B. L. Feringa, J. Am. Chem. Soc., 2000, 122, 11539.
1 The Merck Index, 12th Edition, 1996, p. 1419.
1766
J. Chem. Soc., Perkin Trans. 1, 2001, 1764–1766