6740
M. L. Aghmiz et al. / Tetrahedron 57 62001) 6733±6743
H1), 4.91 5m, 1H, CH2Ph), 4.83 5m, 1H, H3), 4.78 5m, 1H,
H4), 4.72 5m, 1H, CH2Ph), 4.22 5m, 1H, H5a), 4.12 5m, 1H,
J5b,F24.6 Hz, H5b), 1.52 5s, 3H, CH3), 1.32 5s, 3H, CH3).
13C NMR 5CDCl3, 100 MHz) d 135.7 5CAr), 129.0±128.0
NMR 5CDCl3, 282.3 MHz) d 2144.4 5dd, JF1,H163.5 Hz,
JF1,F27.0 Hz, F1), 2119.00 5m, F2).
3.4. Synthesis of glycopyranosyl ¯uoride 23
5CAr), 115.4 5C5CH3)2), 112.2 5dd, J2,F2237.3 Hz, J2,F1
28.2 Hz, C2), 106.8 5dd, J1,F1222.8 Hz, J1,F245.4 Hz,
C1), 79.3 5d, J3,F219.4 Hz, C3), 78.3 5C4), 72.4 5C5), 71.6
5CH2Ph), 25.9 5CH3), 25.6 5CH3). 19F NMR 5CDCl3,
A solution of alcohol 22 50.118 g, 0.3 mmol) in dry DCM
52 ml) was treated with DAST 50.3 ml, 0.360 g, 2.2 mmol)
dropwise under argon atmosphere at room temperature and
the resulting mixture was stirred for a period of 4 h and then
re¯uxed for 3 h. After cooling and standard work up, the
crude residue was puri®ed over silica gel chromatography in
ethyl acetate/hexane1:9 to give compound 23 50.060 g,
49%) as a 1:1 anomeric mixture 5colorless oil).
282.3 MHz) d 2123.5 5m, F2), 2143.7 5dd, JF1,H1
63.6 Hz, JF1,F23.1 Hz, F1).
3.2.2. Spectroscopic data of 18b 0min) extracted from the
spectrum of mixture. 1H NMR 5CDCl3, 400 MHz) d 7.45±
7.20 5m, 5H, Ph), 5.32 5dd, 1H, J1,F163.8 Hz, J1,F22.0 Hz,
H1), 4.88 5m, 1H, CH2Ph), 4.84 5m, 1H, H3), 4.78 5m, 1H,
H4), 4.66 5m, 1H, CH2Ph), 4.22 5m, 1H, H5a), 4.10 5m, 1H,
J5b,F24.7 Hz, H5b), 1.52 5s, 3H, CH3), 1.31 5s, 3H, CH3).
13C NMR 5CDCl3, 100 MHz) d 135.1 5CAr), 129.0±128.0
3.4.1. Spectroscopic data of 23a 0b) extracted from the
spectrum of mixture. 1H NMR 5CDCl3, 400 MHz) d 7.40±
7.20 5m, 5H, Ph), 5.20 5dd, 1H J1,F52.4 Hz, J1,26.3 Hz,
H1), 4.84 5d, 1H, J11.4 Hz, OCH2Ph), 4.78 5d, 1H, J
5CAr), 116.5 5C5CH3)2), 112.4 5dd, J2,F2237.3 Hz, J2,F1
11.4 Hz, OCH2Ph), 3.94 5td, 1H, J3,2J3,410.2 Hz, J3,F
34.0 Hz, C2), 107.1 5dd, J1,F1224.9 Hz, J1,F245.1 Hz,
C1), 79.2 5d, 1H, J3,F219.7 Hz, C3), 78.3 5C4), 72.5 5C5),
71.8 5CH2Ph), 25.9 5CH3), 25.6 5CH3). 19F NMR 5CDCl3,
0
0.9 Hz, H3), 3.67 5dq, 1H, J5,49.6, J5,66.0 Hz, H5) 3.60
5ddd, 1H, J2,F13.7 Hz, J2,310.4 Hz, J2,16.0 Hz, H2),
3.54 5t, 1H, J4,3J4,510 Hz, H4), 3.25 5s, 3H, OMe), 3.22
5s, 3H, OMe), 1.85±1.36 5m, 8H, 5CH2)4), 1.33 5d, 3H,
J6,56.0 Hz, H6). 13C NMR 5CDCl3, 100 MHz) d 138.2
282.3 MHz) d 2123.3 5td, JF2,F1JF2,H313.0 Hz, JF2,H5
5.3 Hz, F2), 2141.6 5dd, JF1,H163.8 Hz, JF1,F213.0 Hz,
F1).
5CAr), 128.3, 5CHAr), 127.6 5CHAr), 109.4 5d, J1,F
213.2 Hz, C1), 98.4 5Cacetal), 98.2 5Cacetal), 78.9 5d, J2,F
23.2 Hz, C2), 74.4 5OCH2Ph), 71.9 5d, J3,F12.2 Hz, C3),
70.8 5C4), 70.5 5d, J5,F5.5 Hz, C5), 48.8 5OMe), 46.7
5OMe), 27.0 5CH2), 26.9 5CH2), 21.4 5CH2), 21.3 5CH2),
16.7 5C6). 19F NMR 5CDCl3, 282.3 MHz) d 2139.6 5dd,
JH1,F51.8 Hz and JH2,F13.5 Hz).
3.3. Synthesis of di¯uorocarbohydrate 21
DAST 50.14 ml, 1 mmol) was added dropwise to a solution
of compound 19 50.048 g, 0.13 mmol)) in anhydrous
CH2Cl2 51 ml). After 24 h, standard work up gave an oil,
which was puri®ed by preparative thin layer chroma-
tography 5ethyl acetate/hexane1:7), to yield the di¯uoro
compound 21 50.029 g, 61%) as an diastereoisomeric
mixture.
3.4.2. Spectroscopic data for 23b 0a) extracted from
spectrum of mixture. 1H NMR 5CDCl3, 400 MHz): d
7.38±7.26 5m, 5H, Ph), 5.50 5dd, 1H, J1,F52.8 Hz, J1,H2
2.8 Hz, H1), 4.86 5m, 2H), 4.29 5t, 1H, J3,2J3,410.4 Hz,
H3), 3.5±3.7 5m, 3H, H2, H4, H5), 3.22 5s, 3H, OCH3), 3.21
5s, 3H, OCH3), 2.20±1.47 5m, 8H, 5CH2)4), 1.26 5d, 3H,
J6,56.4 Hz, H6). 13C NMR 5CDCl3, 100 MHz) 138.1,
128.3, 127.7, 127.4, 105.2 5d, J1,F226.7 Hz, C1), 96.7
5Cacetal), 96.5 5Cacetal), 76.3 5d, J23.5 Hz, C2), 74.4
5OCH2Ph), 71.2, 69.9, 68.0 5d, J2.1 Hz), 46.7 5OMe),
46.5 5OMe), 27.0 5CH2), 26.9 5CH2), 21.35CH2), 21.2
5CH2), 16.6 5C6). 19F NMR 5CDCl3, 282.3 MHz): 2146.65
5dd, JH1,F51.8 Hz, JH2,F22.9 Hz).
3.3.1. Spectroscopic data of 21a 0maj) extracted from the
spectrum of mixture. 1H NMR 5CDCl3, 400 MHz) d 8.00±
7.25 5m, 10H, HAr), 5.34 5dd, 1H, J1,F163.8 Hz, J1,F2
1.6 Hz, H1), 5.24 5dd, 1H, J4,35.4 Hz, J4,54.8 Hz, H4),
4.95 5d, 1H, JAB12.0 Hz, CH2Ph), 4.73 5dd, 1H, JAB
12.0 Hz, JH,F11.7 Hz CH2Ph), 4.32 5dd, 1H, J3,F2
14.1 Hz, J3,45.4 Hz, H3), 4.22 5m, 1H, J5,66.8 Hz, J5,4
4.8 Hz, H5), 3.45 5s, 3H, OCH3), 1.48 5d, 3H, J6,56.8 Hz,
H6). 13C NMR 5CDCl3, 100 MHz) d 165.6 5CO), 133.5±
128.0 512CAr), 112.3 5dd, J2,F2211.7 Hz, J2,F132.3 Hz,
C2), 105.4 5dd, J1,F1224.7 Hz, J1,F245.0 Hz, C1), 82.9
5d, J3,F220.4 Hz, C3), 80.7 5C4), 79.6 5d, J5,F22.4 Hz,
C5), 71.0 5CH2Ph), 58.4 5d, JMe,F22.4 Hz, OCH3), 19.4
5C6). 19F NMR 5CDCl3, 282.3 MHz) d 2140.89 5dd,
JF1,H163.8 Hz, JF1,F29.0 Hz, F1), 2119.15 5m, F2).
3.5. Synthesis of the ulose 24
A mixture of alcohol 22 50.197 g, 0.5 mmol), PCC 50.431 g,
2.0 mmol), sodium acetate 50.164 g, 2.0 mmol) and
Ê
4 A activated molecular sieves 51.0 g) was placed in a light-
protected ¯ask under argon atmosphere and DCM 55 ml)
was added. After 1 h, the solvent was evaporated to dryness
and the residue was puri®ed by column chromatography in
chloroform to afford pure product 24 50.150 g, 77%).
3.3.2. Spectroscopic data of 21b 0min) extracted from the
spectrum of mixture. 1H NMR 5CDCl3, 400 MHz) d 8.00±
7.25 5m, 10H, HAr), 5.33 5dd, 1H, J1,F163.5 Hz, J1,F2
1.8 Hz, H1), 5.22 5dd, 1H, J4,35.0 Hz, J4,54.3 Hz, H4),
4.23 5dd, 1H, J3,F214.1 Hz, J3,45.0 Hz, H3), 4.23 5m,
1H, J5,66.8 Hz, J5,44.3 Hz, H5), 3.45 5s, 3H, OCH3),
1.47 5d, 3H, J6,56.8 Hz, H6). 13C NMR 5CDCl3,
100 MHz) d 165.6 5CO), 133.5±128.0 5CAr), 5C2) not
observed, 105.3 5dd, J1,F1225.3 Hz, J1,F243.8 Hz, C1),
3.5.1. Compound 24. [a]D279.0 5c0.45, CDCl3); IR
1
1727 cm21 5nCO) H NMR 5CDCl3, 400 MHz) d 7.26±
7.29 5m, 5H, Ph), 4.93 5d, 1H, J10.4 Hz, H3), 4.78 5s,
1H, H1), 4.69 5d, 1H, J11.8 Hz, CH2Ph), 4.53 5d, 1H, J
11.8 Hz, CH2Ph), 4.22 5m, 1H, H5), 3.67 5t, 1H, J4,3
J4,510.4 Hz, H4), 3.16 5s, 3H, OCH3), 3.12 5s, 3H,
OCH3), 1.82±1.30 5m, 8H, 5CH2)4), 1.23 5d, 3H,
83.2 5d, J3,F220.6 Hz, C3), 80.8 5C4), 79.7 5d, J5,F2
2.8 Hz, C5), 70.81 5CH2Ph), 58.5 5OCH3), 19.3 5C6). 19F