9922
J. Am. Chem. Soc. 2001, 123, 9922-9923
Scheme 1
Intermolecular Alkyl Radical Addition to Chiral
N-Acylhydrazones Mediated by Manganese Carbonyl
Gregory K. Friestad* and Jun Qin
Department of Chemistry
UniVersity of Vermont
Burlington, Vermont, 05405
Table 1. Results of Metal-Mediated Radical Addition to
Propionaldehyde Hydrazone 2ag
ReceiVed May 30, 2001
Chiral R-branched amines are common substructures of bio-
active synthetic targets. Direct asymmetric amine synthesis by
radical addition to the CdN bond of carbonyl imino derivatives1
holds promise for improved efficiency by introducing the ste-
reogenic center and carbon-carbon bond in one step under mild,
nonbasic conditions. Because related additions of basic organo-
metallic reagents2 often suffer from competing aza-enolization3
or lack of generality and functional group tolerance, an ongoing
search for new stereocontrolled carbon-carbon bond-construction
methods has led to several promising developments,4 including
stereocontrolled intermolecular radical addition.5
We have designed and implemented chiral N-acylhydrazones
from N-amino-4-benzyl-2-oxazolidinone (1) for stereoselective
radical addition incorporating Lewis acid activation6 and restric-
tion of rotamer populations as key design elements.7 In this
approach (Scheme 1), as well as in radical additions by Naito8
and Bertrand,9 secondary and tertiary alkyl iodides were effective,
but additions of primary alkyl radicals have been undermined by
competing ethyl radical addition. We envisioned that new
conditions enabling the use of primary iodides would dramatically
(1) (a) Reviews of radical addition to CdN bonds: Friestad, G. K.
Tetrahedron 2001, 57, 5461. Fallis, A. G.; Brinza, I. M. Tetrahedron 1997,
53, 17543. (b) Giese, B. Radicals in Organic Synthesis: Formation of
Carbon-Carbon Bonds; Pergamon Press: New York, 1986. (c) Jasperse, C.
P.; Curran, D. P.; Fevig, T. L. Chem. ReV. 1991, 91, 1237. (d) Giese, B.;
Kopping, B.; Gobel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach, F.
Org. React. 1996, 48, 301.
(2) Reviews: (a) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069.
(b) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. ReV. 1998, 27, 13. (c)
Bloch, R. Chem. ReV. 1998, 98, 1407. (d) Enders, D.; Reinhold: U.
Tetrahedron Asymmetry 1997, 8, 1895. (e) Denmark, S. E.; Nicaise, O. J.-C.
J. Chem. Soc., Chem. Commun. 1996, 999.
(3) (a) Aza-enolization of imines with Grignard reagents: Stork, G.; Dowd,
S. R. J. Am. Chem. Soc. 1963, 85, 2178. Wittig, G.; Frommeld, H. D.;
Suchanek, P. Angew. Chem., Int. Ed. Engl. 1963, 2, 683. (b) Deprotonation
of iminium ions can be competitive with addition: Guerrier, L.; Royer, J.;
Grierson, D. S.; Husson, H.-P. J. Am. Chem. Soc. 1983, 105, 7754. (c) Less
basic organocerium reagents also exhibit aza-enolization: Enders, D.; Diez,
E.; Fernandez, R.; Martin-Zamora, E.; Munoz, J. M.; Pappalardo, R. R.;
Lassaleta, J. M. J. Org. Chem. 1999, 64, 6329.
(4) For selected recent examples, see: (a) Review of Strecker reactions:
Yet, L. Angew. Chem., Int. Ed. 2001, 40, 875. (b) Mannich reactions: Notz,
W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas, C. F., III. Tetrahedron Lett.
2001, 42, 199. (c) List, B. J. Am. Chem. Soc. 2000, 122, 9336. (d) Saito, S.;
Hatanaka, K.; Yamamoto, H. Org. Lett. 2000, 2, 1891. (e) Miura, K.; Tamaki,
K.; Nakagawa, T.; Hosomi, A. Angew. Chem., Int. Ed. 2000, 39, 1958.
(5) For reviews of acyclic stereocontrol in radical addition to CdC bonds,
see: (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163 and references
therein. (b) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical
Reactions; Concepts, Guidelines, and Synthetic Applications; VCH: New
York; 1995.
a Irradiation was omitted. b Isolated yields of purified diastereomer
mixtures. R or S denotes the configuration of the new stereogenic center.
Addition of methyl iodide gives S configuration due to the lower priority
of the methyl ligand. c 20 equiv of R2X was used. d 1,8-Diazabicy-
clo[5.4.0]undec-7-ene (DBU) was used in removal of Mn byproducts.
e Ratio by HPLC (Chiralcel OD, 2-PrOH/hexane). f Ratio by 1H NMR.
g Reaction conditions: To a deoxygenated solution of InCl3 (2.2 equiv)
and hydrazone 2a in CH2Cl2 (0.1 M) was added the mediator and R2X
(10 equiv) followed by irradiation (300 nm, Pyrex) for 1-2 d at ca. 35
°C under N2.
expand the range of potential synthetic applications. We now
disclose such conditions: photolysis of manganese carbonyl
mediates highly stereoselective intermolecular radical addition of
primary alkyl halides to N-acylhydrazones.
We recognized two significant problems interfering with
primary radical addition using existing methods: Less stable 1°
radicals (versus 2° or 3°) might not be sufficiently long-lived to
avoid premature reduction by Bu3SnH, and generation of the
desired radical from a 1° alkyl iodide requires an unfavorable
iodine atom transfer to Et• when using Et3B or Et2Zn as the
initiator without Bu3SnH. Thus, we typically recovered hydrazones
unchanged when attempting the use of primary iodides in the
presence of Bu3SnH, while Et• addition was the major product
in the absence of Bu3SnH. These observations led us to consider
photolytic initiation in the presence of hexamethylditin.10 Unfor-
tunately, these conditions never reached desirable efficiencies for
Et• additions to hydrazone 2a (Table 1) in part due to complica-
tions from the use of acetone as a sensitizer.
(6) Protonation of imines leads to improved yields in radical addition.
Russell, G. A.; Yao, C.-F.; Rajaratnam, R.; Kim, B. H. J. Am. Chem. Soc.
1991, 113, 373. For a review of Lewis acid effects in radical reactions, see:
Renaud, P.; Gerster, M. Angew. Chem., Int. Ed. 1998, 37, 2562.
(7) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122, 8329.
(8) Radical additions to camphorsultam-modified glyoxylate and malonate
oxime ether derivatives: (a) Miyabe, H.; Ushiro, C.; Naito, T. J. Chem. Soc.,
Chem. Commun. 1997, 1789. (b) Miyabe, H.; Fujii, K.; Naito, T. Org. Lett.
1999, 1, 569. (c) Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T.
J. Org. Chem. 2000, 65, 176. (d) Miyabe, H.; Konishi, C.; Naito, T. Org.
Lett. 2000, 2, 1443.
(9) Radical additions to chiral glyoxylate imines: Bertrand, M. P.; Feray,
L.; Nouguier, R.; Stella, L. Synlett 1998, 780. Bertrand, M. P.; Feray, L.;
Nouguier, R.; Perfetti, P. Synlett 1999, 1148. Bertrand, M. P.; Coantic, S.;
Feray, L.; Nouguier, R.; Perfetti, P. Tetrahedron 2000, 56, 3951.
(10) Kim, S.; Lee, I. Y.; Yoon, J.-Y.; Oh, D. H. J. Am. Chem. Soc. 1996,
118, 5138. Kim, S.; Yoon, J.-Y. J. Am. Chem. Soc. 1997, 119, 5982. Ryu, I.;
Kuriyama, H.; Minakata, S.; Komatsu, M.; Yoon, J.-Y.; Kim, S. J. Am. Chem.
Soc. 1999, 121, 12190-12191.
10.1021/ja011312k CCC: $20.00 © 2001 American Chemical Society
Published on Web 09/15/2001