2082
I. Akritopoulou-Zanze et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2079–2082
Table 4. Human GR,a PR, MR, AR, and ERa;d binding affinities and whole cell GRAF functional assayb
Compounds
R1
R3
GR
IC50 (nM)
PR-1
IC50 (nM)
MR-1
IC50 (nM)
AR-1
IC50 (nM)
ERa-1
IC50 (nM)
GRAF
IC50 (nM)
RU-486
4
1
3
10,000
3355
6896
367
6000
454
89
ND
ND
2281
5
430
87
519 (378–814)c
19 (17–21)
81 (70–92)
2 (2–2)
1
11a
11b
11c
19c
19d
19e
19f
–OMe
–OEt
–Phe
–Phe
22,897
893
162
6525
>10,000
8727
>10,000
>10,000
>10,000
ND
308
57
–OCF2H
–OMe
–OMe
–OMe
–OMe
–OMe
–OMe
–OMe
–Phe
3-MePhe
4-MePhe
3,5-MePhe
3-FPhe
4-FPhe
3-ClPhe
2-Thiophenyl
236
673
333
651
>10,000
>10,000
>10,000
>10,000
>10,000
>10,000
>10,000
21
7 (6–7)c
>10,000
ND
ND
78
2
210
476
1220
683
3 (3–4)c
29 (23–33)c
3 (3–3)
7 (6–8)
>10,000
>1000
76
19g
19h
19l
1157
498
2484
2154
2252
ND
147
66
>10,000
>10,000
450
a;b See Table 1.
c See Table 3.
d The following radiolabeled standards were used: [3H]-progesterone (PR), [3H]-aldosterone (MR), [3H]-mibolerone (AR), [3H]-estrodiol (ER).
derived from aldehyde 18 as shown in Scheme 3. Fol-
lowing this route, we prepared numerous analogs and
were able to improve the potency by 10-fold to the single
digit nanomolar range as exemplified by analogs 19c and
19h (Table 3). Substitution patterns on the phenyl ring
clearly defined an SAR in this series. meta-Substituted
phenyl analogs were more active than para, but both
sites could accommodate polar groups (19p,q,u) and
large substituents (19n and 19o). Replacement of the
phenyl ring, with a benzyl (19k) or pyridine rings, (19s
and 19t) led to a decrease in potency. However, thio-
phene (19l and 19m) and cyclic (19v) or acyclic (19w)
aliphatic groups were well tolerated.
and >200-fold selectivity versus the other steroid
receptors.
References and notes
1. Evans, R. M. Science 1988, 240, 889–895.
2. (a) Diamond, M. I.; Miner, J. N.; Yoshinaga, S. K.;
Yamamoto, K. R. Science 1990, 249, 1266–1272; (b)
Jonat, C.; Rahmsdorf, H. J.; Park, K. K.; Cato, A. C.;
Gebel, S.; Ponta, H.; Herrlich, P. Cell 1990, 62, 1189–
1204; (c) van der Saag, P. T.; Gustafsson, J.-A. Trends
Endocrinol. Metab. 1997, 65, 1–46.
3. Coghlan, M. J.; Elmore, S. W.; Kym, P. R.; Kort, M. E.
Current Topics Med. Chem. 2003, 3, 1617–1635.
4. Chu, J. W.; Matthias, D. F.; Belanoff, J.; Schatzberg, A.;
Hoffman, A. R.; Feldman, D. J. Clin. Endocrinol. Metab.
2001, 86, 3568–3573.
Compounds that demonstrated potent GR-binding and
functional antagonism were examined in a selectivity
panel of steroid receptors (Table 4).
5. Gettys, T. W.; Watson, P. M.; Taylor, I. L.; Collins, S. Int.
J. Obes. 1997, 21, 865–873.
6. Phillips, C. I.; Green, K.; Gore, S. M.; Cullen, P. M.;
Campbell, M. Lancet 1984, 1, 767–768.
In our previous work with chromene-based GR-modul-
ators we had discovered that the C1-substituent plays an
important role in imparting GR-potency and selectiv-
ity.12 Consistent with these findings, in the chromene
series, the methoxy substituent at C1 (11a) was optimal
for maximum selectivity. Small changes in the C1 sub-
stituent, for example, methoxy (11a) versus ethoxy (11b)
led to a decrease in GR-potency and an erosion of the
index of GR-selectivity. Even the more subtle change of
C1-methoxy (11a) to C1-difluoromethoxy (11c) signifi-
cantly altered the activity and selectivity profiles. Com-
pound 11c was more potent, however a disproportional
increase in binding affinity for the MR receptor was also
observed. Substitution patterns on the C-6 phenyl ring
also played an important role in defining activity and
selectivity. meta-Substituted compounds were in general
more potent and selective than para (e.g., 19c vs 19d and
19f vs 19g) and larger substituents were more selective
than smaller ones (e.g., 19h vs 19f). Refinements in the
C6 substituent led to compound (19c) that demonstrated
>200-fold selectivity for GR versus other steroid recep-
tors and functional antagonism within 4-fold of RU-486.
7. Belanoff, J. K.; Flores, B. H.; Kalezhan, M.; Sund, B.;
Schatzberg, A. F. J. Clin. Psychopharmacol. 2001, 21, 516–521.
8. Morgan, B. P.; Swick, A. G.; Hargrove, D. M.; LaFl-
amme, J. A.; Moynihan, M. S.; Carroll, R. S.; Martin, K.
A.; Lee, E.; Decosta, D.; Bordner, J. J. Med. Chem. 2002,
45, 2417–2424.
9. Coghlan, M. J.; Jacobson, P. B.; Lane, B.; Nakane, M.;
Lin, C. W.; Elmore, S. W.; Kym, P. R.; Luly, J. R.; Carter,
G. W.; Turner, R.; Tyree, C. M.; Hu, J.; Elgort, M.;
Rosen, J.; Miner, J. N. Mol. Endocrin. 2003, 17, 860–869.
10. Kaufman, T. S.; Srivastava, R. P.; Sindelar, R. D. J. Med.
Chem. 1995, 38, 1437–1445.
11. The glucocorticoid hormone responding cell line contains
a stably integrated artificial transcription unit comprised
of a glucocorticoid hormone response element (GRE) and
core promoter sequences fused to a downstream reporter
gene encoding a secreted form of alkaline phosphatase
(ALP). IC50 is reported as the concentration required to
inhibit 50% of the dexamethazone induced ALP-response.
12. Kym, P. R.; Kort, M. E.; Coghlan, J. L.; Moore, J. L.;
Tang, R.; Ratajczyk, J. D.; Larson, D. P.; Elmore, S. W.;
Pratt, J. K.; Stashko, M. A.; Falls, H. D.; Lin, C. W.;
Nakane, M.; Miller, L.; Tyree, C. M.; Miner, J. N.;
Jacobson, P. B.; Wilcox, D. M.; Nguyen, P.; Lane, B. C.
J. Med. Chem. 2003, 46, 1016–1030.
In conclusion, we have discovered a novel class of
chromene-based GR-antagonists. Optimized analogs in
this series demonstrate potencies comparable to RU-486