6100
J. Fraga-Dubreuil, J. P. Bazureau / Tetrahedron Letters 42 (2001) 6097–6100
tions. Product isolation is routine and the reactions are
high yielding. The use of this novel IL phase in liquid-
phase organic synthesis (LPOS) offers considerable
advantages because the side product is removed by
simple extraction and washings from the cleaved IL
phase, so no chromatography is necessary. In contrast
to the various restrictions of reaction development in
solid-phase synthesis, IL phases allow standard analyti-
cal methods (NMR, TLC) to monitor reaction pro-
gress. This work has highlighted a novel soluble-phase
approach to LPOS. Perhaps one of the exciting features
of the IL phases is their generality, with potential
applications to many other chemistries. Finally the
IL-phase methodology should be compatible with high-
throughput organic synthesis and automation technol-
ogy. We are currently exploring the scope and the
potential of microwave assisted liquid-phase synthesis20
by extending this approach to other IL-phase
transformations.
12. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B.
Thermochem. Acta 2000, 357–358, 97.
13. Typical procedure for the preparation of 1-{2-[4-(2-
formylphenoxy)butyryloxy]ethyl}-3-methyl-3H-imidazol-
1-ium tetrafluoroborate (7a) (route A): To a mixture of
dicyclohexylcarbodiimide (2.97 g, 14.42 mmol) and
dimethylaminopyridine 5% (88 mg, 0.7 mmol) in dry
acetonitrile
[hydemim][BF4] 6 (3.08 g, 14.42 mmol) in one portion,
then 4-(2-formylphenoxy)butyric acid (3 g, 14.42
(75
ml)
were
added
successively
3
mmol). After vigorous stirring at rt for 18 h, the insoluble
N,N%-dicyclohexylurea was eliminated by filtration. The
filtrate was concentrated under reduced pressure and the
resulting crude reaction mixture was washed three times
with benzene (20 ml). Removal of the solvent in vacuo
lead to a pale yellow viscous oil in 97% yield. The ionic
liquid phase 7a was stored under an inert atmosphere at
4°C. 1H NMR lH [(CD3)2CO, 300 MHz] 2.15 (quint.,
2H), 2.66 (t, 2H), 4.02 (s, 1H), 4.20 (t, 2H), 4.52 (t, 2H),
4.66 (t, 2H), 7.06 (t, 1H), 7.20 (d, 1H), 7.63 (ddd, 1H),
7.67 (t, 1H), 7.73 (dd, 1H), 7.78 (t, 1H), 9.02 (s, 1H),
10.44 (s, 1H); 13C NMR lC [(CD3)2CO, 75 MHz] 24.9,
30.8, 36.6, 49.5, 63.1, 68.3, 114.0, 121.4, 123.9, 124.7,
125.7, 128.4, 137.0, 138.1, 162.1, 173.2, 189.8; HRMS,
m/z: 317.1497 found (calcd for C17H21N2O4, M+ requires:
317.1501)
Acknowledgements
J. Fraga-Dubreuil wishes to thank the Ministe`re de la
Recherche et de l’Enseignement Supe´rieur for
a
research fellowship. We also thank Professor Jack
Hamelin for fruitful discussions.
14. (a) Che´rouvrier, J. R.; Boissel, J.; Carreaux, F.;
Bazureau, J. P. Green Chem. 2001, in press; (b) Vanelle,
P.; Meuche, J.; Maldonado, J.; Crozet, M. P.; Delmas,
F.; Timon-David, P. Eur. J. Org. Chem. 2000, 157; (c)
Bourmendjel, A.; Nuzillard, J. M.; Massiot, G. Tetra-
hedron Lett. 1999, 40, 9033; (d) Chamontin, K.; Lokskin,
V.; Rossollin, V.; Samat, A.; Guglielmetti, R. Tetra-
hedron 1999, 55, 5821; (e) Michaud, D.; Ayoubi, S. A.;
Dozias, M. J.; Toupet, L.; Texier-Boullet, F.; Hamelin, J.
Chem. Commun. 1997, 1613.
15. (a) Varma, R. S. Green Chem. 1999, 1, 43; (b) Loupy, A.;
Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.;
Mathe´, D. Synthesis 1998, 1213; (c) Caddick, S. Tetra-
hedron 1995, 51, 10403.
16. Commarmot, R.; Didenot, R.; Gardais, J. F. Fr.
Demande 25 560 529, 1985; Chem. Abstr. 1986, 105,
17442.
17. (a) Chi, Y. C.; Sun, C. M. Synthesis 2000, 591; (b)
Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K. Synthesis
2000, 1217; (c) Shuttleworth, S. J.; Allin, S. M.; Wilson,
R. D.; Nasturica, D. Synthesis 2000, 1035.
18. Before using [hydemim][BF4] 6 in the second run, the
IL-phase 6 was washed twice with methylene chloride (15
ml). After addition of acetone and filtration, the filtrate
was concentrated in vacuo. Then, the grafted IL-phase 7a
was synthesised also in high yield (97%) with the same
reaction time (18 h) from [hydemim][BF4]) 6 according to
the experimental procedure describe in Ref. 13.
References
1. Ley, S. V.; Baxendale, J. R.; Bream, R. N.; Jackson, P.
S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J.
S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans.
1 2000, 23, 3815 and references cited therein.
2. Yan, B. Acc. Chem. Res. 1998, 31, 621 and references
cited therein.
3. (a) Toy, P. H.; Janda, K. D. Acc. Chem. Res. 2000, 33,
546; (b) Wentworth, Jr., P.; Janda, K. D. Chem. Com-
mun. 1999, 1917; (c) Gravert, D. J.; Janda, K. D. Chem.
Rev. 1997, 97, 489.
4. Fraga-Dubreuil, J.; Bazureau, J. P. Tetrahedron Lett.
2000, 41, 7351.
5. (a) Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed.
2000, 39, 3772; (b) Hagiwara, R.; Ito, Y. J. Fluorine
Chem. 2000, 105, 221; (c) Welton, T. Chem. Rev. 1999,
99, 2071; (d) Seddon, K. R. J. Chem. Tech. Biotechnol.
1997, 38, 351; (e) Seddon, K. R. Kinet. Catal. Engl.
Transl. 1996, 37, 693.
6. Olivier, H. J. Mol. Catal. A 1999, 146, 285.
7. (a) Sundermeyer, W. Angew. Chem. 1965, 77, 241; Angew.
Chem., Int. Ed. Engl. 1965, 4, 222; (b) Sundermeyer, W.
Chem. Unserer Z. 1967, 1, 150; (c) Volkov, S. V. Chem.
Soc. Rev. 1990, 19, 21.
19. (a) de La Hoz, A.; Diaz-Ortis, A.; Morenos, A.; Langa,
F. Eur. J. Org. Chem. 2000, 3659; (b) Fraga-Dubreuil, J.;
Cherouvrier, J. R.; Bazureau, J. P. Green Chem. 2000, 2,
226.
8. Benson, D. R.; Valentekovich, R.; Tam, S. W.;
Diederich, F. Helv. Chim. Acta 1993, 76, 2034.
9. Mathias, L. J. Synthesis 1979, 561.
10. Vowinkel, E.; Wolff, C. Chem. Ber. 1974, 107, 496.
11. Giesemann, H. J. Prakt. Chem. 1957, 4, 169.
20. Stadler, A.; Kappe, C. O. Eur. J. Org. Chem. 2001, 919.
.