2646
M. A. Lynch et al. / Bioorg. Med. Chem. Lett. 11 (2001) 2643–2646
being synthesized to establish the exact nature of sub-
stituents required in this structure for optimal activity.
Site-specific DNA cleavage studies using top1 will also
help to determine the mode of action of each molecule
and will further explore the antitumor potential of this
class of compound.
Acknowledgements
This research was supported by grants from ARC, from
Region Champagne-Ardenne (I.N., A.S.) and from
departement du Maine et Loire (M.A.L., O.D.).
References and Notes
1. Simanek, V. In The Alkaloids; Brossi, A., Ed.; Academic:
New York, 1985; p 26.
2. (a) Phillips, S. D.; Castle, R. N. J. Heterocycl. Chem. 1981,
18, 223. (b) Suffness, M.; Cordell, G. A. In The Alkaloids;
Brossi, A.; Academic: New York, 1985; Vol. 25, p 178.
3. MacKay, S. P.; Meth-Cohn, O.; Waigh, R. D. Adv.
Heterocycl. Chem. 1997, 67, 345.
4. (a) Fang, S. D.; Wang, L.-K.; Hecht, S. M. J. Org. Chem.
1993, 58, 5025. (b) Wang, L. K.; Johnson, R. K.; Hecht, S. M.
Chem. Res. Toxicol. 1993, 6, 813. (c) Larsen, A. K.; Grondard,
L.; Couprie, J.; Desoize, B.; Jardillier, J. C.; Riou, J. F. Bio-
chem. Pharm. 1993, 46, 1403.
5. MacKay, S. P.; Comoe, L.; Desoize, B.; Duval, O.; Jardil-
lier, J. C.; Waigh, R. D. Anti-Cancer Drug Des. 1998, 13, 797.
6. (a) Ianoul, A.; Fleury, F.; Duval, O.; Waigh, R.; Jardillier,
J. C.; Alix, A. J. P.; Nabiev, I. J. Phys. Chem. 1999, 103, 2008.
(b) Fleury, F.; Sukhanova, A.; Ianoul, A.; Devy, J.; Kudelina,
I.; Duval, O.; Alix, A. J. P.; Jardillier, J.-C.; Nabiev, I. J. Biol.
Chem. 2000, 275, 3501.
7. Bailly, C. Curr. Med. Chem. 2000, 7, 39 and references
herein.
8. Nakanishi, T.; Masuda, A.; Suwa, M.; Akiyama, Y.; Hos-
hino-Abe, N.; Suzuki, M. Bioorg. Med. Chem. Lett. 2000, 10,
2321.
Figure 1. Inhibition of the topoisomerase I-mediated plasmid DNA
relaxation by new BZP derivatives. DNA plasmid pGEM-7Zf(+)
(lane 1) incubated with DNA topoisomerase I(lane 2). Topoisomerase
I-mediated plasmid DNA relaxation observed in the presence of
fagaronine 1 (panel A), derivative 14 (panel B), derivative 11 (panel
C), derivative 16 (panel D) at 12 mM (lane 3), 3 mM (lane 4), 0.75 mM
(lane 5), 0.1875 mM (lane 6), 0.0469 mM (lane 7).
hand, selectivity with AT is observed with 14. Hence, a
smaller group in this position induces a different effect,
more similar to that for
3
(R12=CH2CH3,
X=CH3SO3À). The results from both types of mod-
ifications indicate that the nature of the 2-position sub-
stituent is of great significance for DNA interaction.
Moreover, a structural combination of the stronger
DNA binder 3 (R12=CH2CH3, X=CH3SO3À) with the
weaker DNA binder 2 leads to decrease of DNA-bind-
ing potency, giving additional proof that each molecule
interacts with nucleic acids in a particular manner.
9. Lynch, M. A.; Duval, O.; Pochet, P.; Waigh, R. D. Bull.
Soc. Chim. Fr. 1994, 131, 718.
10. Stermitz, F. R.; Gillespie, J. P.; Amoros, L. G.; Romero,
R.; Stermitz, T. A. J. Med. Chem. 1975, 18, 708.
11. Fleury, F.; Ianoul, A.; Kryukov, E.; Sukhanova, A.;
Kudelina, I.; Wynne-Jones, A.; Bronstein, I. B.; Maizieres, M.;
Berjot, M.; Dodson, G. G.; Wilkinson, A. J.; Holden, J. A.;
Feofanov, A. V.; Alix, A. J. P.; Jardillier, J. C.; Nabiev, I.
Biochemistry 1998, 37, 14630.
12. Bronstein, I.; Wynne-Jones, A.; Sukhanova, A.; Fleury,
F.; Ianoul, A.; Holden, J.; Alix, A. J. P.; Dodson, G.; Jardil-
lier, J. C.; Nabiev, I.; Wilkinson, A. J. Anticancer Res. 1999,
19, 317.
The good DNA binding and top1 inhibition effects, in
conjunction with the poor in vitro cytotoxic activities,
may indicate that 11, 14 and 16 experience major pro-
blems in reaching their cellular targets. Further studies
are in progress aimed at understanding the mechanisms
involved in penetration of the cytotoxic agents of this
class through cellular membranes. New BZPs are also
13. Mosmann, T. J. Immunol. Meth. 1983, 65, 55.
14. Olugbade, T. A.; Waigh, R. D. Pharm. Sci. 1996, 2, 259.