Scheme 2
Scheme 3
5 Z. A. Bortolotte, Z. I. Beshir, C. H. Davies and G. L. Collingridge,
afforded the target cyclopropylglutamic acid analogue 1 in
good overall yield. The structure of 1 was established on the
basis of 1H NMR, 13C NMR and mass spectra.14
Nature, 1994, 368, 740.
6 C. Pawloski-Dahm and F. J. Gordon, Am. J. Physiol., 1992, 262,
1611.
7 G. Riedel, W. Wetzel and K. G. Reymann, Neurosci. Lett., 1994, 167,
141.
8 A. I. Sacaan, F. P. Bymaster and D. D. Schoepp, J. Neurochem.,
1992, 59, 245.
9 (a) H. Shinozaki, Y. Ohfune, K. Watanabe, P. Li and H. Takeuchi,
Tetrahedron Lett., 1988, 29, 1181; (b) K. Shimamato, M. Ishida,
H. Shinozaki and Y. Ohfune, J. Org. Chem., 1991, 56, 4167; (c)
K. Shimamato and Y. Ohfune, Synlett, 1993, 12, 919.
10 D. Ma and Z. Ma, Tetrahedron Lett., 1997, 38, 7599.
11 (a) D. K. Mohapatra and A. Datta, J. Org. Chem., 1998, 63, 642; (b)
V. Sundararaman, D. K. Mohapatra and A. Datta, Tetrahedron
Lett., 1998, 39, 1075; (c) V. Sundararaman, D. K. Mohapatra and
A. Datta, Tetrahedron Lett., 1998, 39, 5667; (d ) D. K. Mohapatra,
Synth. Commun., 1999, 29, 4261.
In conclusion, an efficient stereoselective synthesis of pro-
tected D-CCG-I has been developed using as the key step
a
chelation-controlled Simmons–Smith cyclopropanation,
following Taguchi’s protocol, on a readily available -serine-
derived chiral template. Utilizing ent-3 and/or changing the
starting alkene geometry, it is possible to synthesize all four of
the possible isomers of CCG following the approach described
above, thereby, showing the versatility of this method. The
reported methods either involve multistep reactions or give a
poor overall yield. Following our protocol, it is, however,
possible to prepare large amounts of the carboxycyclopropyl-
glycine, which is important for pharmacological applications.
The synthesis of other cyclopropyl-containing bioactive mole-
cules is in progress and will be reported in due course.
12 T. Morikawa, H. Sasaki, A. Shibuya and T. Taguchi, J. Org. Chem.,
1994, 59, 103.
13 A. B. Charette, S. Prescott and C. Brochu, J. Org. Chem., 1995, 60,
1081 and references therein.
Acknowledgements
14 Compound 4: [α]D: Ϫ63.8 (c = 2.0, CHCl3); IR (neat): 1742, 1698
cmϪ1; 1H NMR (CDCl3): δ 1.30 (t, J = 6.98 Hz, 3H, CH3), 1.38–1.70
(m, 15H, 2 × CH3 and t-Bu), 3.80 (dd, J = 3.68, 9.2 Hz, 1H, OCH2),
4.07 (dd, J = 5.00, 9.20 Hz, 1H, OCH2), 4.20 (q, J = 6.80 Hz, 1H,
OCH2CH3), 4.32–4.60 (br m, 1H, NCH), 5.87 (br d, J = 15.80 Hz,
I thank Dr M. K. Gurjar, Dr A. Datta and Dr B. V. Rao for
their support and fruitful discussions.
References
1H, COCH᎐CH), 6.80 (dd, J = 8.70, 15.80 Hz, 1H, COCH᎐CH);
᎐
᎐
1 (a) D. T. Monaghan, R. J. Bridges and C. W. Cotman, Annu.
Rev. Pharmacol. Toxicol., 1989, 29, 365; (b) C. J. Wakins, P.
Kroggsgaard-Larsen and T. Honore, Trends Pharmacol. Sci., 1990,
11, 25.
2 (a) G. L. Collingridge and T. V. P. Bliss, Trends Neurosci., 1987, 10,
288; (b) D. V. Madison, R. C. Malenka and R. A. Nicoll, Annu. Rev.
Neurosci., 1991, 14, 379; (c) H. Kaba, Y. Hayashi, T. Higuchi and
S. Nakanishi, Science, 1994, 265, 262.
3 (a) B. Meldrum and J. Garthwaite, Trends Pharmacol. Sci., 1990, 11,
379; (b) L. W. Olney, Annu. Rev. Pharmacol. Toxicol., 1999, 30, 47;
(c) D. W. Choi and S. M. Rothman, Annu. Rev. Neurosci., 1990,
13, 171.
4 (a) J. P. Pin and R. Duvoisin, Neuropharmacology, 1995, 34, 1; (b)
T. Knopfel, R. Kuhn and H. Allegier, J. Med. Chem., 1995, 38, 1417.
FABMS: 230 (MHϩ). Compound 2: [α]D: Ϫ21.59 (c = 0.75, CHCl3);
IR (neat): 3400–3200, 1692 cmϪ1; 1H NMR (CDCl3): δ 0.86 (m, 1H,
CH-cyclopropyl), 1.21 (m, 1H, CH-cyclopropyl), 1.47–1.70 (m,
17H, 2 × CH-cyclopropyl, t-Bu and 2 × CH3), 3.30 (m, 1H, NCH),
3.55 (m, 1H, OCH2), 3.66 (m, 1H, OCH2), 3.92 (m, 2H, CH2OH);
FABMS: 260 (MHϩ). Compound 1: [α]D: Ϫ32.45 (c = 1.2, CHCl3);
IR (neat): 1742, 1723, 1682 cmϪ1; 1H NMR (CDCl3): δ 1.05 (m, 1H,
CH-cyclopropyl), 1.24 (m, 1H, CH-cyclopropyl), 1.44 (s, 9H, t-Bu),
1.72 (m, 2H, CH2-cyclopropyl), 3.69 (2 × s, 3H, OCH3), 3.78 (2 × s,
3H, OCH3), 3.90–4.15 (m, 1H, NCH), 5.14 (br m, 1H, NHBoc); 13
C
NMR (CDCl3): δ 173.4, 171.6, 155.4, 80.0, 54.8, 52.3, 28.0, 23.9,
17.8, 12.8, 12.0; FABMS: 288 (MHϩ). HPLC column, CHIRAL
CEL (OD); mobile phase, 10% propan-2-ol in n-hexane; flow rate,
1 mL minϪ1; UV detection at 225 nm.
1852
J. Chem. Soc., Perkin Trans. 1, 2001, 1851–1852