10.1002/anie.201812742
Angewandte Chemie International Edition
COMMUNICATION
4-lithiated bis-silyl pyridine 19, which was quenched with a variety
of electrophiles affording the 4-functionalized pyridines 20a-m in
60-96% yield (Scheme 6).[15,23]
In summary, we have found that the nBuLi•PMDTA complex is an
exceptionally active base for the regioselective remote lithiation of
various 1,3-bis(triethylsilyl)arenes, including the bis-silylated
pyridine 18. We have converted the resulting para-functionalized
arenes into a variety of tetrasubstituted arenes, demonstrating the
utility of our procedure for remote lithiations. Further extensions
of this method are currently being studied in our laboratories.
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG) for
financial support. We thank Albemarle (Frankfurt, Germany) for
the generous gift of chemicals. We thank Dr. Johannes Nickel for
preliminary experiments.
Scheme 6: Remote lithiation of pyridine 18, leading to functionalized pyridines
of type 20. [a] Yield of analytically pure isolated product. [b] NEt3 was used
during column chromatographical purification. [c] ZnCl2 (1.1 equiv.) and
CuCN•2LiCl (10 mol%) were added. [d] ZnCl2 (1.1 equiv.) and Pd(PPh3)4
(2 mol%) were added. [e] MgCl2 (1.0 equiv.) was added.
Keywords: lithiation • pyridines • remote metalation • silanes
[1]
a) J. Clayden, Organolithiums: Selectivity for Synthesis (Eds.: J. E.
Baldwin, R. M. Williams), Pergamon, Oxford, 2002; b) F. Mongin, A.
Harrison-Marchand, Chem. Rev. 2013, 113, 7563; c) D. Tilly, F.
Chevallier, F. Mongin, P. C. Gros, Chem. Rev. 2014, 114, 1207.
a) P. Beak, V. Snieckus, Acc. Chem. Res. 1982, 15, 306; b) D. R. Ray,
Z. Song, S. G. Smith, P. Beak, J. Am. Chem. Soc. 1988, 110, 8145; c) V.
Snieckus, Chem. Rev. 1990, 90, 879; d) K. M. Bertini, P. Beak, J. Am.
Chem. Soc. 2001, 123, 315; e) S. Usui, Y. Hashimoto, J. V. Morey, A. E.
H. Wheatley, M. Uchiyama, J. Am. Chem. Soc. 2007, 129, 15102; f) D. I.
Coppi, A. Salomone, F. M. Perna, V. Capriati, Angew. Chem. Int. Ed.
2012, 51, 7532; g) V. Mallardo, R. Rizzi, F. C. Sassone, R. Mansueto, F.
M. Perna, A. Salomone, V. Capriati, Chem. Commun. 2014, 50, 8655; h)
J. Mortier, Arene Chemistry: Reaction Mechanisms and Methods for
Aromatic Compounds, John Wiley & Sons, New Jersey, 2016.
Silyl-free 2,4,6-trisubstituted pyridines were readily obtained by
selective metalations of pyridines of type 20. Thus, the 4-arylated
pyridine 20d was converted to the 2-bromopyridine 21 by a
BF3•OEt2-mediated magnesiation with TMPMgCl•LiCl followed by
the addition of bromine (83% yield).[24] TBAF-mediated
protodesilylation furnished the disubstituted pyridine 22 in 98%
yield. Metalation of 22 with TMPMgCl•LiCl (0 °C, 1 h) and quench
with various electrophiles led to the products 23a-e in 79-97%
yield (Scheme 7).[25]
[2]
[3]
a) D. R. Armstrong, W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W.
Honeyman, R. E. Mulvey, Angew. Chem. Int. Ed. 2006, 45, 3775; Angew.
Chem. 2006, 118, 3859; b) R. E. Mulvey, Acc. Chem. Res. 2009, 42,
743; c) A. J. Martinez-Martinez, A. R. Kennedy, R. E. Mulvey, C. T.
O’Hara, Science 2014, 346, 834; see also: d) C. J. Rohbogner, G. C.
Closoki, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 1503; Angew.
Chem. 2008, 120, 1526; e) J. P. Flemming, M. B. Berry, J. M. Brown,
Org. Biomol. Chem. 2008, 6, 1215.
[4]
[5]
a) R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593; b) B. Chen, C.-L.
Hou, Y.-X. Li, Y.-D. Wu, J. Am. Chem. Soc. 2011, 133, 7668.
a) D. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518; b) L. Wan,
N. Dastbaravardeh, G. Li, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 18056;
c) G. Yang, P. Lindovska, D. Zhu, J. Kim, P. Wang, R.-Y. Tang, M.
Movassaghi, J.-Q. Yu, J. Am. Chem. Soc. 2014, 136, 10807; d) R.-Y.
Tang, G. Li, J.-Q. Yu, Nature 2014, 507, 215; e) L. Fang, T. G. Saint-
Denis, B. L. H. Taylor, S. Ahlquist, K. Hong, S. Liu, L. Han, K. N. Houk,
J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 10702; f) G. Yang, D. Zhu, P.
Wang, R.-Y. Tang, J.-Q. Yu, Chem. Eur. J. 2018, 24, 3434.
Scheme 7: Selective functionalization of pyridine 20d via a sequence of
TMPMgCl•LiCl magnesiations, leading to trisubstituted pyridines of type 23. [a]
Yield of analytically pure isolated product. [b] CuCN•2LiCl (10 mol%) was added.
[c] ZnCl2 (4.0 equiv.), Pd(dba)2 (2 mol%) and P(o-furyl)3 (4 mol%) were added.;
TBAF: tetrabutylammonium fluoride
Finally, this remote lithiation has been briefly extended to biphenyl
derivatives. The readily prepared bis-silyl derivative 24 was
metalated with nBuLi•PMDTA (25 °C, 6 h) providing the 5-lithiated
biphenyl 25, as sole meta-metalation product (Scheme 8). A
subsequent reaction with MeSSMe afforded thioether 26 in 38%
yield.
[6]
[7]
S. Lee, H. Lee, K. L. Tan, J. Am. Chem. Soc. 2013, 135, 18778.
a) X.-C. Wang, W. Gong, L.Z. Fang, R.-Y. Zhu, S. Li, K. M. Engle, J.-Q.
Yu, Nature 2015, 519, 334; b) P. Wang, G.-C. Li, P. Jain, M. E. Farmer,
J. He, P.-X. Shen, J.-Q. Yu, J. Am. Chem. Soc. 2016, 138, 14092; c) P.
Wang, M.E. Farmer, X. Huo, P. Jain, P.-X. Shen, M. Ishoey, J. E. Bradner,
S. R. Wisniewski, M. D. Eastgate, J.-Q. Yu, J. Am. Chem. Soc. 2016,
138, 9269; d) Q. Ding, S. Ye, G. Cheng, P. Wang, M. E. Farmer, J.-Q.
Yu, J. Am. Chem. Soc. 2017, 139, 417; e) H. Shi, A. N. Herron, Y. Shao,
Q. Shao, J.-Q. Yu, Nature 2018, 58, 581.
[8]
[9]
N. Hofmann, L. Ackermann, J. Am. Chem. Soc. 2013, 135, 5877.
A. Maji, A. Dahiya, G. Lu, T. Bhattacharya, M. Brochetta, G. Zanoni, P.
Liu, D. Maiti, Nat. Commun. 2018, 9, 3582.
Scheme 8: Remote lithiation of biphenyl 24, leading to thioether 26. [a] Yield of
analytically pure isolated product.
This article is protected by copyright. All rights reserved.