Total Synthesis of Macquarimicins
A R T I C L E S
been shown to catalyze Diels-Alder reactions in purified or
partially purified form. In 2003, the group of Tanaka and
Oikawa elucidated the structure of Diels-Alderase for the first
time by X-ray crystallography of MPS.15 In this area, synthetic
chemistry has been playing an important role. For example, the
catalytic activities on the Diels-Alder reactions of all three
enzymes were investigated using synthetically prepared sub-
strates. Details of the biosyntheses of 1-9 are still unclear.
Therefore, the development of a synthetic methodology may
help to elucidate the details by supplying synthetic probes. This
intriguing feature of this class of natural products, combined
with biological activities and a formidable molecular architec-
ture, makes them highly attractive targets for synthetic chemists.
In 1999, Sorensen and co-workers reported the first synthetic
study of FR182877 (8) and proposed the biosynthetic pathway
for the antibiotic.10 Soon after, synthetic investigations of 8 and
9 were reported by the groups of Armstrong,16 Sorensen,17
Nakada,18 Roush,19 and Clarke.20 In 2002, Sorensen and co-
workers21 and Evans and Starr22 independently achieved enan-
tioselective total syntheses of (+)- and (-)-8, respectively. Their
elegant approaches featured a domino sequence of two trans-
annular Diels-Alder (TADA) reactions that converted mono-
cyclic substrates into pentacyclic cycloadducts with remarkable
stereoselectivity.
The first report on the synthetic study of macquarimicins or
cochleamycins was disclosed by our group in 2001.23 Later,
the groups of Paquette24 and Roush25 also reported their
synthetic studies. All three studies concern the construction of
the tetrahydroindane ring (AB ring) using the IMDA reaction
of (E,Z,E)-1,6,8-nonatrienes as the key transformation. In 2003,
Tatsuta and co-workers26 disclosed the first total synthesis of
(+)-4 and established its absolute configuration. The Tatsuta
synthesis also features the IMDA reaction of an (E,Z,E)-triene
to form the AB ring, and they employed the SmI2-mediated
intramolecular Reformatsky reaction to construct the 10-
membered carbocycle. Very recently, the Roush group has also
accomplished their total synthesis of (+)-4 using a TADA
strategy.27 In 2003, we reported the first total synthesis of (+)-1
using a TADA reaction as the key step.28 Through this work,
we determined the absolute configuration of natural (+)-1 and
revised its proposed structure concerning the C(2)-C(3) ge-
ometry. Herein, we report a full account of the total synthesis
Figure 2. Structures of related natural products.
of IL-1â and PGE2, the key inflammatory cytokines, and exhibit
antiinflammatory activity in vivo by oral administration.3,4a
Closely related natural products, antitumor antibiotics, co-
chleamycin (4-7),6 a microtubule-stabilizing agent FR182877
(8),7,8 and hexacyclinic acid (9)9 have been isolated (Figure 2).
These natural products may share a biogenetic pathway that
involves the intramolecular Diels-Alder (IMDA) reaction of
polyketide intermediates.6d,10,11 It has been proposed that Diels-
Alder reactions may be involved in the biosynthesis of more
than 100 natural products.11b However, to date, only three natural
enzymes, solanapyrone synthase (SPS),12 lovastatin nonaketide
synthase (LNKS),13 and macrophomate synthase (MPS),14 have
(5) For examples of N-SMase inhibitors, see: (a) Nara, F.; Tanaka, M.; Hosoya,
T.; Suzuki-Konagai, K.; Ogita, T. J. Antibiot. 1999, 52, 525-530. (b)
Uchida, R.; Tomoda, H.; Dong, Y.; Omura, S. J. Antibiot. 1999, 52, 572-
574. (c) Tanaka, M.; Nara, F.; Yamasato, Y.; Ono, Y.; Ogita, T. J. Antibiot.
1999, 52, 827-830. (d) Uchida, R.; Tomoda, H.; Arai, M.; Omura, S. J.
Antibiot. 2001, 54, 882-889. (e) Arenz, C.; Giannis, A. Angew. Chem.,
Int. Ed. 2000, 35, 1440-1442. (f) Hakogi, T.; Monden, Y.; Iwama, S.;
Katsumura, S. Org. Lett. 2000, 2, 2627-2629. (g) Lindsey, C. C.; Go´mez-
D´ıaz, C.; Villalba, J. M.; Pettus, T. R. R. Tetrahedron 2002, 58, 4559-
4565.
(6) (a) Shindo, K.; Kawai, H. J. Antibiot. 1992, 45, 294-295. (b) Shindo, K.;
Matsuoka, M.; Kawai, H. J. Antibiot. 1996, 49, 241-243. (c) Shindo, K.;
Iijima, H.; Kawai, H. J. Antibiot. 1996, 49, 244-248. (d) Shindo, K.;
Sakakibara, M.; Kawai, H.; Seto, H. J. Antibiot. 1996, 49, 249-252.
(7) (a) Sato, B.; Muramatsu, H.; Miyauchi, M.; Hori, Y.; Takase, S.; Hino,
M.; Hashimoto, S.; Terano, H. J. Antibiot. 2000, 53, 123-130. (b) Sato,
B.; Nakajima, H.; Hori, Y.; Hino, M.; Hashimoto, S.; Terano, H. J. Antibiot.
2000, 53, 204-206. (c) Yoshimura, S.; Sato, B.; Kinoshita, T.; Takase, S.;
Terano, H. J. Antibiot. 2000, 53, 615-622; 2002, 55, C-1.
(8) Recently, carboxyesterase-1 inhibitory activity of 8 was reported: Adam,
G. C.; Vanderwal, C. D.; Sorensen, E. J.; Cravatt, B. F. Angew. Chem.,
Int. Ed. 2003, 42, 5480-5484.
(9) Ho¨fs, R.; Walker, M.; Zeeck, A. Angew. Chem., Int. Ed. 2000, 39, 3258-
3261.
(10) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.; Sorensen, E. J. Org. Lett.
1999, 1, 645-648. See also ref 21b.
(11) For reviews on the biosynthesis of Diels-Alder-type natural products,
see: (a) Ichihara, A.; Oikawa, H. Curr. Org. Chem. 1998, 2, 365-394.
(b) Ichihara, A.; Oikawa, H. In ComprehensiVe Natural Products Chemistry;
Sankawa, U., Ed.; Barton, D. H. R., Nakanishi, K., Meth-Cohn, O., Series
Eds.; Elsevier: Oxford, 1999; Vol. 1, pp 367-408. (c) Williams, R. M.;
Stocking, E. M. Angew. Chem., Int. Ed. 2003, 42, 3078-3115.
(12) Oikawa, H.; Kobayashi, T.; Katayama, K.; Suzuki, Y.; Ichihara, A. J. Org.
Chem. 1998, 63, 8748-8756.
(13) Auclair, K.; Sutherland, A.; Kennedy, J.; Witter, D. J.; Vanden Heever, J.
P.; Hutchinson, C. R.; Vederas, J. C. J. Am. Chem. Soc. 2000, 122, 11519-
11520.
(14) Watanabe, K.; Mie, T.; Ichihara, A.; Oikawa, H.; Honma, M. J. Biol. Chem.
2000, 275, 38393-38401.
(15) Ose, T.; Watanabe, K.; Mie, T.; Honma, M.; Watanabe, H.; Yao, M.;
Oikawa, H.; Tanaka, I. Nature 2003, 422, 185-189.
(16) Armstrong, A.; Goldberg, F. W.; Sandham, D. A. Tetrahedron Lett. 2001,
42, 4585-4587.
(17) Vanderwal, C. D.; Vosburg, D. A.; Sorensen, E. J. Org. Lett. 2001, 3, 4307-
4310.
(18) Suzuki, T.; Nakada, M. Tetrahedron Lett. 2002, 43, 3263-3267.
(19) Methot, J. L.; Roush, W. R. Org. Lett. 2003, 5, 4223-4226.
(20) (a) Clarke, P. A.; Grist, M.; Ebden, M.; Wilson, C. Chem. Commun. 2003,
1560-1561. (b) Clarke, P. A.; Grist, M.; Ebden, M. Tetrahedron Lett. 2004,
45, 927-929.
(21) (a) Vosburg, D. A.; Vanderwal, C. D.; Sorensen, E. J. J. Am. Chem. Soc.
2002, 124, 4552-4553. (b) The Sorensen group also has reported the total
synthesis of natural (-)-FR182877: Vanderwal, C. D.; Vosburg, D. A.;
Weiler, S.; Sorensen, E. J. J. Am. Chem. Soc. 2003, 125, 5393-5407.
(22) (a) Evans, D. A.; Starr, J. T. Angew. Chem., Int. Ed. 2002, 41, 1787-
1790. (b) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531-
13540.
(23) Munakata, R.; Ueki, T.; Katakai, H.; Takao, K.; Tadano, K. Org. Lett.
2001, 3, 3029-3032.
(24) Chang, J.; Paquette, L. A. Org. Lett. 2002, 4, 253-256.
(25) Dineen, T. A.; Roush, W. R. Org. Lett. 2003, 5, 4725-4728.
(26) Tatsuta, K.; Narazaki, F.; Kashiki, N.; Yamamoto, J.; Nakano, S. J. Antibiot.
2003, 56, 584-590.
(27) Dineen, T. A.; Roush, W. R. Org. Lett. 2004, 6, 2043-2046.
(28) Munakata, R.; Katakai, H.; Ueki, T.; Kurosaka, J.; Takao, K.; Tadano, K.
J. Am. Chem. Soc. 2003, 125, 14722-14723.
9
J. AM. CHEM. SOC. VOL. 126, NO. 36, 2004 11255