R. M. Kanada, K. Ogasawara / Tetrahedron Letters 42 (2001) 7311–7313
7313
X
Boc
N
Boc
N
N
ii
v
N
H
i
N
H
N
H
17
H
H
H
H
H
H
H
OBn
H
OBn
H
OX
18
22 : X = Bn
23 : X = H
24 : X = Ms
19 : X = NMe2
20 : X = CN
21 : X = CHO
vi
iii
iv
vii
20
MsO–
+
N
H
viii
14
N
N
H
H
H
N
H
H
H
(+)-20R-dihydrocleavamine 1
25
Scheme 4. Reagents and conditions: (i) NaOEt, EtOH, reflux (65%). (ii) CH2NMe2Cl. (iii) MeI, then KCN, DMF, 100°C (83%,
three steps). (iv) DIBAL, −78°C then 1.6N H2SO4 (92%). (v) BF3, AcOH, CH2Cl2, 0°C then NaBH3CN (60%). (vi) Na, liq. NH3,
ButOH, THF (85%). (vii) Ms–Cl, Et3N. (viii) Na, liq. NH3, ButOH, THF (64%, two steps).
Upon treatment with boron trifluoride–acetic acid com-
plex in dichloromethane, followed by sodium
cyanoborohydride in the same flask, 21 furnished tetra-
cyclic amine 22 in 60% yield through a sequential
N-deprotection and reductive cyclization.16 In order to
construct the ring system of the target molecule 1, 22
was debenzylated to give the primary alcohol 23 which
was then mesylated to form ammonium salt 25,
directly, without isolation of the mesylate 24. As has
been established,7a,17 both of the two epimers consisted
of the mesylate 24 formed ammonium salt 25 as a
mixture of epimers, which, on Birch reduction with
sodium in liquid ammonia, allowed regioselective CꢀN
bond cleavage to afford the targeted (+)-20R-dihydro-
cleavamine 1, [h]2D6 +65.1 (c 0.2, CHCl3) {natural: [h]D
+68 (CHCl3);5 [h]D20 +133 (c 0.078, CHCl3)6}, in 64%
yield as a single product (Scheme 4).
2. Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 1997, 38,
6429.
3. Miller, R. D.; Dolce, D. L.; Merritt, V. Y. J. Org. Chem.
1976, 41, 1204.
4. Miller, R. D.; Abraitys, V. Y. J. Am. Chem. Soc. 1972, 94,
663.
5. Quirin, F.; Debray, M.-M.; Sigaut, C.; Thepenier, P.; Le
Men-Olivier, L.; Le Men, J. Phytochemistry 1975, 14, 812.
6. van Beek, T. A.; Verpoorte, R.; Svendsen, A. B. Tetra-
hedron 1984, 737.
7. For previous chiral synthesis of 1, see: (a) Takano, S.;
Uchida, W.; Hatakeyama, S.; Ogasawara, K. Chem. Lett.
1982, 733; (b) Danieli, B.; Lesma, G.; Passarella, D.;
Silvani, A. Tetrahedron Lett. 2000, 41, 3489.
8. Sajiki, H. Tetrahedron Lett. 1995, 36, 3465.
9. Fisher, M. J.; Overman, L. E. J. Org. Chem. 1990, 55,
1447.
10. Rychnovsky, S. D.; Dahanukar, V. H. J. Org. Chem. 1996,
61, 7468.
11. Sonogashira, K.; Tohda, Y.; Hagiwara, N. Tetrahedron
Lett. 1975, 4467.
12. (a) Takano, S.; Sato, T.; Inomata, K.; Ogasawara, K. J.
Chem. Soc., Chem. Commun. 1991, 402; (b) Shin, K.;
Ogasawara, K. Chem. Lett. 1995, 289; (c) Shin, K.;
Ogasawara, K. Synlett 1995, 859; (d) Shin, K.; Ogasawara,
K. Synlett 1996, 922; (e) Saito, M.; Kawamura, M.;
Hiroya, K.; Ogasawara, K. Chem. Commun. 1997, 765.
13. Sakamoto, T.; Kondo, Y.; Yamanaka, H. Heterocycles
1986, 24, 31.
In conclusion, we have developed an alternative route
to (+)-20R-dihydrocleavamine from a readily accessible
enantiopure precursor containing a cyclobutane moiety
by employing a photo-[2+2]-cycloreversion reaction as
the key step.
Acknowledgements
We are grateful to the Japan Society for the Promotion
of Science for a scholarship (to R.M.K).
14. Gaudry, M.; Jasor, Y.; Khac, B. K. Org. Synth. Col. Vol.
1988, 6, 474.
15. Hayashi, M.; Yoshiga, T.; Oguni, N. Synlett 1991, 479.
16. So¨dergren, M. J.; Andersson, P. G. J. Am. Chem. Soc.
1998, 120, 10760.
References
17. Kutney, J. P. In The Total Synthesis of Natural Products;
ApSimon, J., Ed.; Wiley-Interscience: New York, 1977;
Vol. 3, pp. 273–438.
1. (a) Taniguchi, T.; Ogasawara, K. Chem. Commun. 1997,
1399; (b) Taniguchi, T.; Kanada, R. M.; Ogasawara, K.
Tetrahedron: Asymmetry 1997, 8, 2773.