the free energy with the tilt angle as a transition parameter.4 It
was supposed that this term changes sign twice, at the SmA*-
SmC* and SmC*-SmA*RE phase transitions. Along this line, we
consider that in 10ZBL the value of the lowest term just
approaches zero without reaching full softening and transition to
the SmA*RE phase.
Notes and references
1 (a) P. E. Cladis, Physical Properties of Liquid Crystals, ed. D. Demus,
J. Goodby, G. W. Gray, H.-W. Spiess, V. Vill, Wiley-VCH, 1999, p.
288–303; (b) P. E. Cladis, R. K. Bogardus and D. Aadsen, Phys. Rev.
A: At., Mol., Opt. Phys., 1978, 18, 2292–2306; (c) S. Singh, Phase
Transitions, 2000, 72, 183–200; (d) P. E. Cladis, Phys. Rev. Lett.,
1975, 35, 48–51; (e) F. Harduin and A. M. Levelut, J. Phys., 1980,
41, 41–46; (f) V. N. Raja, R. Shasidar, B. R. Ratna, G. Hepke and
Ch. Bahr, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 37, 303–305;
(g) Ch. Y. Yelamaggat, I. S. Shashikala, D. S. Shankar Rao,
G. G. Nair and S. Krishna Prasad, J. Mater. Chem., 2006, 16,
4099–4102; (h) S. Abraham, V. A. Mallia, K. V. Ratheesh,
N. Tamaoki and S. Das, J. Am. Chem. Soc., 2006, 128, 7692–7698.
We can find several similarities in molecular properties of
studied ferroelectric homologues 9ZBL and 10ZBL and
compounds exhibiting inversion of polarization and/or tilt
angle.10 Contrary to obvious temperature dependencies in the
SmC* phase, values of polarization and tilt fall down. For
compounds with inversion these quantities change their sign at
an inversion temperature and we can imagine that at this
temperature the SmA* structure occurs. This rare anomaly has
been observed for fluorine-laterally substituted terphenyl deriv-
atives with two chiral centers.10a We can expect that the presence
of multiple chiral centers is important also in our case. Styring
et al.10a explained the inversion effect taking into account
competition of various molecular conformations. We suppose
that in 9ZBL, due to a similar mechanism the SmA*RE phase
appears on cooling after the SmC* phase and then persists within
a certain temperature interval till crystallization.
ꢀ
ꢀ
2 (a) U. Pietrasik, J. Szyd1owska, A. Krowczynski, D. Pociecha,
ꢀ
E. Gorecka and D. Guillon, J. Am. Chem. Soc., 2002, 124(30),
8884–8890; (b) D. Pociecha, E. Gorecka, M. Cepic, N. Vaupotic,
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
B. Zeks, D. Kardas and J. Mieczkowski, Phys. Rev. Lett., 2000, 86,
3048–3051; (c) V. Novotna, M. Glogarova, V. Hamplova and
ꢀ
ꢀ
ꢀ
ꢁ
M. Kaspar, J. Chem. Phys., 2001, 115, 9036–9041; (d)
D. S. Shankar Rao, S. Krishna Prasad, V. N. Raja,
C. V. Yelamaggad and S. Anitha Nagamani, Phys. Rev. Lett., 2001,
87, 085504-1–4; (e) C. V. Yelamaggad, V. Tamilenthi,
D. S. Shankar Rao, G. G. Nair and S. Krishna Prasad, J. Mater.
Chem., 2009, 19, 2906–2908.
3 (a) S. L. Wu and C. Y. Lin, Liq. Cryst., 2004, 31, 1613–1617; (b)
S. L. Wu and C. Y. Lin, Liq. Cryst., 2005, 32, 1243–1249; (c)
E. Dzik, J. Mieczkowski, E. Gorecka and D. Pociecha, J. Mater.
Chem., 2005, 15, 1255–1262; (d) S.-L. Wu and H.-N. Hsu, Liq.
Generally, for anomalous phase behaviour occurrence of
multiple chiral centres may be important as well as various
conformations with respect to the chiral chain and their concen-
trations change with temperature. Lots of effects such as dipolar
interactions, packing arrangements, rotational distribution of
various conformers play a significant role in the phase stability.
For conclusion let us mention that the ferroelectric compound
with the SmA*RE phase represents a new chance for technical
applications. The SmA*RE phase is very sensitive to an electric
field which can easily extend the SmC* phase to lower temper-
atures at the expense of the SmA*RE phase. Strong electroclinic
effect was found not only near the SmA*-SmC* phase transition,
which is typical, but within a wide temperature interval of the
SmA*, SmC* and SmA*RE phases. These properties are prom-
ising for electrooptic applications especially when grey-scale
capability and fast response is required.
ꢀ
Cryst., 2007, 34, 1159–1165; (e) V. Novotna, M. Kaspar,
V. Hamplova, M. Glogarova, I. Rychetsky and D. Pociecha, Liq.
ꢁ
ꢀ
ꢀ
ꢀ
ꢀ
Cryst., 2004, 31, 1131–1141; (f) A. Bubnov, V. Hamplova,
M. Kaspar, M. Glogarova and P. Vanek, Ferroelectrics, 2000, 243,
ꢁ
ꢀ
ꢁ
ꢀ
27–35; (g) A. Bubnov, V. Novotna, V. Hamplova, M. Kaspar and
M. Glogarova, J. Mol. Struct., 2008, 892, 151–157.
ꢀ
ꢁ
ꢀ
ꢀ
ꢀ
ꢁ
ꢀ
4 V. Novotna, M. Glogarova, M. Kaspar, V. Hamplova, E. Gorecka,
D. Pociecha and M. Cepic, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2011, 83, 020701(R).
5 A. Langhoff and F. Giesselmann, ChemPhysChem, 2002, 3, 424–432.
6 (a) H.-S. Kitzerow, H. Schmid, A. Ranft, G. Heppke,
R. A. M. Hikmet and J. Lub, Liq. Cryst., 1993, 14, 911–916; (b)
H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu and G. Heppke,
Phys. Rev. A: At., Mol., Opt. Phys., 1990, 42, 3442–3448; (c)
J. Rokunohe and A. Yoshizawa, J. Mater. Chem., 2005, 15, 275–
279; (d) S. Meiboom and M. Sammon, Phys. Rev. Lett., 1980, 44,
882–885.
7 A. Dierking, Textures of Liquid Crystals, WILEY-VCH Verlag
GmbH, 2003.
8 (a) J. V. Selinger, P. J. Colins and R. Shashidhar, Phys. Rev. E: Stat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, 64, 061705 1–9;
(b) M. S. Spector, P. A. Heiney, J. Naciri, B. T. Weslowski, D. B. Holt
and R. Shashidhar, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top., 2000, 61, 1579–1584; (c) N. Kapernaum,
D. M. Walba, E. Korblova, C. Zhu, C. Jones, Y. Shen, N. A. Clark
and F. Giesselmann, ChemPhysChem, 2009, 10, 890–892.
Acknowledgements
This work is supported by grant P204/11/0723 from the Grant
Agency of the Czech Republic and by projects IAA100100911
(Grant Agency of ASCR) and SVV-2011-263303. The X-ray
diffraction measurements were performed at the Structural
Research Laboratory, Chemistry Department, University of
Warsaw, Poland, which has been established with financial
support from European Regional Development Fund, project
No: WKP 1/1.4.3./1/2004/72/72/165/2005/U.
ꢀ
9 M. Glogarova, Ch. Destrade, J. P. Marcerou, J. J. Bonvent and
H. T. Nguyen, Ferroelectrics, 1991, 121, 285–294.
10 (a) P. Styring, J. D. Vuijk, I. Nishiyama, A. J. Slaney and
J. W. Goodby, J. Mater. Chem., 1993, 3(4), 399–405; (b)
K. Yoshino, H. Taniguchi and M. Ozaki, Ferroelectrics, 1989, 91,
267–276; (c) K. Nakao, M. Ozaki and K. Yoshino, Japanese
Journal of Appl. Physics, 1987, 26–2, 104–106.
14814 | J. Mater. Chem., 2011, 21, 14807–14814
This journal is ª The Royal Society of Chemistry 2011