Self-Assembly into a Staircase Architecture
J. Am. Chem. Soc., Vol. 123, No. 46, 2001 11463
the graphite-solution interface8-10,14,17 and in dry thin films
on conductive substrates18 with molecular resolution. The first
type of PAH which has been explored were triphenylene
derivatives,8,9 which possess 18 carbon atoms in the aromatic
core. Following the recent achievements in the synthesis of
larger and larger PAHs, the packing at surfaces of compounds
with 4210,17,18 and 60 carbons14 in the conjugated core has been
also studied. These systems have been found to form two-
dimensional crystals where the disklike molecules lie flat on
the basal plane of the conductive substrate. Recently, an STM
investigation of self-assembled monolayers of a series of
triphenylene derivatives with increasing lengths of the alkyl side
substituents has been reported which revealed different periodi-
cally distributed contrasts of the conjugated disks: the observed
structures have been explained with a frustrated Ising net
model.9
In a previous report it has been shown that HBC-C12 (4)
(Figure 1) can crystallize in monolayers at the solution-graphite
interface with all conjugated cores lying equally flat on the basal
plane of the HOPG.10 STM and STS have been used to study
the molecular structure and electronic properties of the mono-
layer on the molecular scale. In the latter type of analysis, a
diode like electrical behavior of the conjugated HBC core in
the gap tip-substrate has been observed.10
(5) (a) Rabe, J. P.; Buchholz, S. Science 1991, 253, 424-427. (b) Cyr,
D. M.; Venkataraman, B.; Flynn, G. W.; Black, A.; Whitesides, G. M. J.
Phys. Chem. 1996, 100, 13747-13759. (c) Claypool, Ch. L.; Faglioni, F.;
Goddard, W. A., III; Gray, H. B.; Lewis, N. S.; Marcus, R. A. J. Phys.
Chem. B 1997, 101, 5978-5995. (d) Samor´ı, P.; Francke, V.; Mu¨llen, K.;
Rabe, J. P. Chem. Eur. J. 1999, 5, 2312-2317. (e) Stawasz, M. E.; Sampson,
D. L.; Parkinson, B. A. Langmuir 2000, 16, 2326-2342. (f) Qiu, X.; Wang,
C.; Zeng, Q.; Xu, B.; Yin, S.; Wang, H.; Xu, S.; Bai, C. J. Am. Chem. Soc.
2000, 122, 5550-5556. (g) Gesquie`re, A.; Abdel-Mottaleb, M. M. S.; De
Feyter, S.; De Schryver, F. C.; Schoonbeek, F.; van Esch, J.; Kellogg, R.
M.; Feringa, B. L.; Calderone, A.; Lazzaroni, R.; Bre´das, J. L. Langmuir
2000, 16, 10385-10391.
Figure 1. Chemical formulas.
With the aim of extending the molecular order of the
physisorbed layers to the third dimension (z axis) in the region
near the substrate surface, we have investigated HBC derivatives
symmetrically functionalized in the peripheral positions with
more bulky side chains, which, due to steric hindrances could
force neighboring HBCs to acquire different positions along the
z axis.
(6) (a) Clar, E. Aromatische Kohlenwasserstoffe: Polycyclische Systeme;
Springer: Berlin, Go¨ttingen, Heidelberg, 1952. (b) Clar, E., The Aromatic
Sextet; John Wiley: London, 1972. (c) Diederich, F.; Rubin, Y. Angew.
Chem. 1992, 104, 1123-1146; Angew. Chem., Int. Ed. Engl. 1992, 31,
1101-1123. (d) Faust, R. Angew. Chem. 1995, 107, 1559-1562; Angew.
Chem., Int. Ed. Engl. 1995, 34, 1429-1432. (e) Hudgins, D. M.;
Allamandola, L. J. J. Phys. Chem. 1995, 99, 3033-3046. (f) Scott, L. T.;
Cheng, P.-C.; Hashemi, M. M.; Bratcher, M. S.; Meyer, D. T.; Warren, H.
B. J. Am. Chem. Soc. 1997, 119, 10963-10968. (g) Tong, L.; Lau, H.; Ho,
D. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 1998, 120, 6000-6006. (h)
Debad, J. D.; Bard, A. J. J. Am. Chem. Soc. 1998, 120, 2476-2477.
(7) (a) Adam, D.; Schuhmacher, P.; Simmerer, J.; Ha¨ussling, L.;
Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994,
371, 141-143. (b) Simmerer, J.; Glu¨sen, B.; Paulus, W.; Kettner, A.;
Schuhmacher, P.; Adam, D.; Etzbach, K.-H.; Siemensmeyer, K.; Wendorff,
J. H.; Ringsdorf, H.; Haarer, D. AdV. Mater. 1996, 8, 815-819. (c) van de
Craats, A. M.; Warman, J. M.; de Haas, M. P.; Adam, D.; Simmerer, J.;
Haarer, D.; Schuhmacher, P. AdV. Mater. 1996, 8, 823-826.
(8) (a) Askadskaya, L.; Boeffel, C.; Rabe, J. P. Ber. Bunsen-Ges. Phys.
Chem. 1993, 97, 517-521. (b) Gabriel, J.-C.; Larsen, N. B.; Larsen, M.;
Harrit, N.; Pedersen, J. S.; Schaumburg, K.; Bechgaard, K. Langmuir 1996,
12, 1690-1692.
(9) Charra, F.; Cousty, J. Phys. ReV. Lett. 1998, 80, 1682-1685.
(10) Stabel, A.; Herwig, P.; Mu¨llen, K.; Rabe, J. P. Angew. Chem. 1995,
107, 335-339; Angew. Chem., Int. Ed. Engl. 1995, 34, 1609-1611.
(11) Goddard, R.; Haenel, M. W.; Herndon, W. C.; Kru¨ger, C.; Zander,
M. J. Am. Chem. Soc. 1995, 117, 30-41.
(12) Herwig, P.; Kayser, C. W.; Mu¨llen, K.; Spiess, H. W. AdV. Mater.
1996, 8, 510-513.
(13) Mu¨ller, M.; Ku¨bel, Ch.; Mu¨llen, K. Chem. Eur. J. 1998, 4, 2099-
2109.
We report here a submolecularly resolved STM investigation
of the self-assembly of different enantiomerically pure (S) or
(R,S) hydrocarbon-substituted HBCs with and without a phen-
ylene spacer (Figure 1) into monolayers highly ordered at the
graphite-solution interface.
Compound 1 is bearing alkyl side chains exhibiting a chiral
methyl function in the 3′-position and a racemic one in the 7′-
position. In compound 2a a phenylene has been introduced
between the HBC core and the enantiomerically pure aliphatic
chain in each of the six peripheral positions. Because of the
repulsive interactions between ortho protons in the phenylenes
and the ones of the neighboring aromatic rings, the phenylenes
are likely to be twisted with respect to the HBC core. This loss
of planarity of the HBC could play a role in the organization
of the molecules when physisorbed into layers at the HOPG-
solution interface. In addition, to gain insight into the role of
the chirality of the group in the 3′-position, the (R,S) mixture
of 2a, namely, compound 2b, and compound 3 have been also
analyzed.
The syntheses of alkyl-, and phenylene-alkyl-substituted
hexabenzocoronenes, HBC-C8* (1) and HBC-PhC12 (3)
respectively, have been previously described in the literature.15
Here, in the Experimental Section, we will just briefly discuss
the synthesis of the optically active HBC-PhC8* (2a) and the
mixture of stereoisomers HBC-PhC8 (2b), which have been
synthesized according to similar procedures.
(14) Iyer, V. S.; Yoshimura, K.; Enkelmann, V.; Epsch, R.; Rabe, J. P.;
Mu¨llen, K. Angew. Chem. 1998, 110, 2843-2846; Angew. Chem., Int. Ed.
1998, 37, 2696-2699.
(15) (a) Fechtenko¨tter, A.; Saalwa¨chter, K.; Harbison, M. A.; Mu¨llen,
K.; Spiess, H. W. Angew. Chem. 1999, 111, 3224-3228; Angew. Chem.,
Int. Ed. 1999, 38, 3039-3042. (b) Fechtenko¨tter, A.; Tchebotareva, N.;
Watson, M.; Mu¨llen, K. Tetrahedron Symp. 2001, 57, 3769-3783.
(16) van de Craats, A. M.; Warman, J. M.; Fechtenko¨tter, A.; Brand, J.
D.; Harbison, M. A.; Mu¨llen, K. AdV. Mater. 1999, 11, 1469-1472.
(17) Ito, S.; Wehmeier, M.; Brand, J. D.; Ku¨bel, Ch.; Epsch, R.; Rabe,
J. P.; Mu¨llen, K. Chem. Eur. J. 2000, 6, 4327-4342.
(18) Schmitz-Hu¨bsch, T.; Sellam, F.; Staub, R.; To¨rker, M.; Fritz, T.;
Ku¨bel, Ch.; Mu¨llen, K.; Leo, K. Surf. Sci. 2000, 445, 358-367.