Notes
1,1-Dich lor oeth ylp h osp h in e (4c). Yield: 91%. 31P NMR
J . Org. Chem., Vol. 66, No. 23, 2001 7867
mbar) of both the solvents and products. Thus, the flask cooled
at -10 °C was fitted on a vacuum line, the low boiling
compounds were evaporated and then condensed in a cold trap
(-196 °C). Thus prepared, the ethereal solutions of phos-
phaalkynes can be kept for several months in a freezer (-20
°C) under nitrogen.
P r ep a r a tion of P u r e Low Boilin g P h osp h a a lk yn es (5c-
e,h ,i). To obtain pure samples of phosphaalkynes 5c-e,h ,i,
diglyme should be used as solvent both in the reduction and
elimination steps. The filtered mixture was fitted on a vacuum
line equipped with two cold traps. The first one was cooled at
-40 °C to remove the solvent, and the second one cooled at -120
°C allowed the trapping of the phosphaalkynes 5c-e,h ,i selec-
tively. The mixture was degassed, and the low boiling compounds
were distilled in vacuo (10-1 mbar). At the end of the distillation,
this trap was disconnected from the vacuum line. In these
conditions, the pure phosphaalkynes 5c-e,h ,i should be kept
at low temperature (< -80 °C).
(CDCl3) δ: -46 (1J PH ) 196 Hz). 1H NMR (CDCl3) δ: 2.45 (dt,
3
1
3H, J PH ) 6.7 Hz, J ) 0.5 Hz), 4.33 (dq, 2H, J PH ) 196 Hz, J
) 0.5 Hz). 13C NMR (CDCl3) δ: 42.0 (2J CP ) 8.0 Hz), 80.3 (1J CP
) 25.3 Hz). HRMS calcd for C2H5Cl2P: 129.9506; found 129.951.
m/z (%): 132 (6.8), 131 (2.0), 130 (12.0), 129 (4.7), 128 (1.6), 99
(50.0), 97 (100), 95 (35.9), 79 (9.2), 67 (22.9).
1,1-Dich lor op r op ylp h osp h in e (4d ). Yield: 91%. 31P NMR
(CDCl3) δ: -56 (1J PH ) 197 Hz). 1H NMR (CDCl3) δ: 1.23 (t,
3
3H, J ) 7.1 Hz), 2.44 (qd, 2H, J ) 7.1 Hz, J PH ) 4.1 Hz), 4.20
(d, 2H, J PH ) 197 Hz). 13C NMR (CDCl3) δ: 10.9 (3J CP ) 3.7
1
Hz), 45.4 (2J CP ) 8.0 Hz), 86.2 (1J CP ) 26.0 Hz). HRMS calcd for
C3H7Cl2P: 143.9662; found 143.967. m/z (%): 146 (2.9), 144 (4.1),
143 (12.0), 131 (33.9), 129 (47.8), 113 (23.9), 11 (54.5), 83 (17.7),
81 (26.8), 77 (25.7), 70 (90.5).
1,1-Dich lor op en tylp h osp h in e (4e). Yield: 94%. 31P NMR
(CDCl3) δ: -53.5 (1J PH ) 198 Hz). H NMR (CDCl3) δ: 0.96 (t,
1
3H, J ) 7.3 Hz), 1.40 (qt, 2H, J ) 7.3, 7.3 Hz), 1.69 (tt, 2H, J )
7.2,7.3 Hz), 2.41 (m, 2H, J ) 7.2 Hz, 3J PH ) 5.4 Hz), 4.24 (d, 2H,
1J PH ) 198 Hz). 13C NMR (CDCl3) δ: 13.9, 22.0, 28.5, 51.7, 85.1
(1J CP ) 27.9 Hz). HRMS calcd for C5H11ClP (M - Cl)+: 137.0287;
found 137.028. m/z (%): 146 (2.9), 144 (4.1), 143 (12.0), 131 (33.9),
129 (47.8), 113 (23.9), 11 (54.5), 83 (17.7), 81 (26.8), 77 (25.7),
70 (90.5).
P r ep a r a tion of Cr u d e P h osp h a a lk yn es (5g,k ) in Ab-
sen ce of Solven t. Phosphaalkynes 5g,k decompose on heating,
their boiling point being too high to allow their purification by
distillation in good conditions. When diethyl ether or toluene
are used as solvent, solutions of dichlorophosphines 5g,k can
be concentrated by cooling the solution at -40 °C and removing
the solvent in vacuo. Crude products 5g,k should be kept at low
temperature (< -80 °C).
1,1-Dich lor o-1-t r im et h ylsilylm et h ylp h osp h in e
(4f).
Yield: 85%. 31P NMR (CDCl3) δ: -79 (1J PH ) 196 Hz). 1H NMR
Meth ylid yn ep h osp h in e (5b). Yield: 20%. 31P NMR (CDCl3)
1
(CDCl3) δ: 0.32 (s, 9H), 4.05 (d, 2H, J PH ) 196 Hz). 13C NMR
2
δ: -32 (2J PH ) 44.0 Hz). 1H NMR (CDCl3) δ: 2.90 (d, J PH
)
(CDCl3) δ: -3.62, 73.9 (1J CP ) 29.8 Hz). HRMS calcd for C4H11
-
44.0 Hz). 13C NMR (CDCl3) δ: 158.0 (1J PC ) 56.0 Hz). HRMS
calcd for CHP: 43.98159; found 43.9818. IR (neat, 77 K): 1267
cm-1 (νC≡P).
Cl2PSi: 187.9745; found 187.974. m/z (%): 147 (1.2), 115 (3.6),
113 (4.5), 101 (1.3), 95 (9.9), 93 (28.6), 65 (4.4), 45 (11.3).
1,1-Dich lor o-3-p h en ylp r op ylp h osp h in e (4g). Yield: 85%.
31P NMR (CDCl3) δ: -55 (1J PH ) 197 Hz). 1H NMR (CDCl3) δ:
2.65 (t, 2H, J ) 7.9 Hz), 3.06 (m, 2H, J ) 7.9 Hz), 4.30 (d, 2H,
1J PH ) 197 Hz), 7.16-7.21 (m, 2H), 7.24-7.28 (m, 3H). 13C NMR
(CDCl3) δ: 32.8 (3J CP ) 3.6 Hz), 53.8 (2J CP ) 6.5 Hz), 84.4 (1J CP
Eth ylid yn ep h osp h in e (5c). Yield: 75%. 31P NMR (CDCl3)
δ: -61 (3J PH ) 15.0 Hz). 1H NMR (CDCl3) δ: 2.44 (d, 3H, J PH
3
) 15.0 Hz). 13C NMR (CDCl3) δ: 15.6 (2J PC ) 20 Hz), 170.8 (1J PC
) 49.0 Hz). HRMS calcd for C2H3P: 57.99724; found 57.9972.
IR (neat, 77 K): 1559 cm-1 (νC≡P).
) 26.5 Hz), 126.5, 126.6, 126.6, 128.8. HRMS calcd for C9H11
-
P r op ylid yn ep h osp h in e (5d ). Yield: 77%. 31P NMR (CDCl3)
δ: -62 (3J PH ) 15.0 Hz). 1H NMR (CDCl3) δ: 1.17 (t, 3H, J )
Cl2P: 219.9975; found 219.997.
1,1-Dich lor o-1-bu t-3-en ylp h osp h in e (4h ). Yield: 85%. 31
P
7.5 Hz), 2.34 (dq, 2H, J PH ) 15.0 Hz, J ) 7.5 Hz). 13C NMR
3
NMR (CDCl3) δ: -57 (1J PH ) 198 Hz). H NMR (CDCl3) δ: 3.14
(tm, 2H, J ) 5.7 Hz), 4.28 (d, 2H, 1J PH ) 198 Hz), 5.30 (dm, 1H,
J ) 17.0 Hz), 5.32 (dm, 1H, J ) 9.3 Hz), 5.95 (ddt, 1H, J ) 17.0,
9.3, 5.7 Hz). 13C NMR (CDCl3) δ: 55.8 (2J CP ) 11.6 Hz), 83.1
(1J CP ) 25.3 Hz), 121.1 (3J CP ) 5.7 Hz), 131.6. HRMS calcd for
C4H7Cl2P: 155.9662; found 155.966.
1
(CDCl3) δ: 14.8 (3J PC ) 7.6 Hz), 19.4 (2J PC ) 19.4 Hz), 177.0
(1J PC ) 44.3 Hz). HRMS calcd for C3H5P: 72.01289; found
72.0131. IR (neat, 77 K): 1552 cm-1 (νC≡P).
P en tylid yn ep h osp h in e (5e). Yield: 81%. 31P NMR (CDCl3)
δ: -59 (3J PH ) 14.7 Hz). 1H NMR (CDCl3) δ: 0.91 (t, 3H, J )
7.3 Hz), 1.45 (tq, 2H, J ) 7.3, 7.3 Hz), 1.53 (tt, 2H, J ) 7.3, 6.8
Hz), 2.37 (td, 2H, 3J PH ) 14.7 Hz, J ) 6.8 Hz). 13C NMR (CDCl3)
δ: 13.6, 21.6, 29.3 (2J PC ) 19.6 Hz), 31.7 (3J PC ) 6.6 Hz), 176.4
(1J PC ) 43.0 Hz). HRMS calcd for C5H9P: 100.0442; found
100.044. IR (neat, 77 K): 1545 cm-1 (νC≡P).
1,1-Dich lor o-1-p en t-3-en ylp h osp h in e (4i). Yield: 85%. 31
P
1
NMR (CDCl3) δ: -53 (1J PH ) 198 Hz). H NMR (CDCl3) δ: 2.52
1
(m, 4H), 4.28 (d, 2H, J PH ) 198 Hz), 5.07 (d, 1H, J ) 10.2 Hz),
5.13 (d, 1H, J ) 17.5 Hz), 5.86 (ddt, 1H, J ) 17.5, 10.2, 5.9 Hz).
13C NMR (CDCl3) δ: 30.5 (3J PC ) 4.0 Hz), 50.9 (2J PC ) 7.2 Hz),
84.6 (1J PC ) 26.4 Hz), 116.0, 135.9. HRMS calcd for C5H8Cl2P
(M - H)+: 168.9741; found 168.975.
3-P h en ylp r op ylid yn ep h osp h in e (5g). Yield: 60%. 31P
NMR (CDCl3) δ: -56.8 (3J PH ) 14.9 Hz). 1H NMR (CDCl3) δ:
2.60 (m, 2H, J ) 6.6 Hz), 3.08 (m, 2H, J ) 6.6 Hz), 7.15-7.28
1,1-Dich lor o-1-p h en ylm eth ylp h osp h in e (4j). Yield: 55%.
(m, 5H). 13C NMR (CDCl3) δ: 29.9 (3J PC ) 7.0 Hz), 35.3 (2J PC
7.0 Hz), 126.4, 128.4, 128.6, 140.1, 174.0 (1J PC ) 45.3 Hz).
)
31P NMR (CDCl3) δ: -30 (1J PH ) 198 Hz). 1H NMR (CDCl3) δ:
1
4.59 (d, 2H, J PH ) 198 Hz), 7.04-7.21 (m, 3H), 7.80-7.84 (m,
2H). 13C NMR (CDCl3) δ: 83.0 (1J PC ) 27.6 Hz), 125.6 (3J PC
)
Bu t-3-en ylid yn ep h osp h in e (5h ). Yield: 75%. 31P NMR
6.9 Hz), 127.6 (2J PC ) 17.1 Hz) 128.4, 129.1.
(CDCl3) δ: -52 (3J PH ) 15.3 Hz). H NMR (CDCl3) δ: 2.73 (ddt,
1
2H, 3J PH ) 15.3 Hz, J ) 5.4, 1.7 Hz), 4.92 (ddt, 1H, J ) 9.9, 1.7,
1.7 Hz), 5.12 (ddt, 1H, J ) 17.0, 1.7, 1.7 Hz), 5.50 (ddtd, 1H, J
1,1-Dich lor o-1-cycloh exylm eth ylp h osp h in e (4k ). Yield:
84%. 31P NMR (CDCl3) δ: -55 (1J PH ) 201 Hz). 1H NMR (CDCl3)
) 17.0, 9.9, 5.4 Hz, J PH ) 0.9 Hz). 13C NMR (CDCl3) δ: 33.3
4
1
δ: 1.10-2.22 (m, 11H), 4.23 (d, 2H, J PH ) 201 Hz). 13C NMR
(2J PC ) 19.5 Hz), 116.4, 132.0 (3J PC ) 6.9 Hz), 170.2 (1J PC ) 46.3
Hz). HRMS calcd for C4H5P: 84.01289; found 84.0128.
P en t-4-en ylid yn ep h osp h in e (5i). Yield: 72%. 31P NMR
(CDCl3) δ: -57 (3J PH ) 15.2 Hz). 1H NMR (CDCl3) δ: 2.31 (m,
2H, J ) 6.5 Hz), 2.46 (m, 2H, J ) 6.5, 6.6 Hz), 5.03 (m, 1H, J )
10.3 Hz), 5.08 (m, 2H, J ) 17.0 Hz), 5.82 (m, 1H, J ) 6.6, 10.3,
17.0 Hz). 13C NMR (CDCl3) δ: 28.7 (2J PC ) 19.7 Hz), 33.0 (3J PC
) 7.2 Hz), 115.4, 135.6, 173.8 (1J PC ) 45.0 Hz). HRMS calcd for
C5H7P: 98.02854; found 98.0284.
(CDCl3) δ: 25.7, 25.9, 28.9 (3J PC ) 5.1 Hz), 54.7(2J PC ) 9.9 Hz),
90.4 (1J PC ) 31.7 Hz). HRMS calcd for C7H12Cl2P (M - H)+:
197.0054; found 197.006.
P r ep a r a tion of P h osp h a a lk yn es (5b-e,g-i,k ). Gen er a l
P r oced u r e. The solution of R-dichlorophosphines 5b-e,g-i,k
(50 mmol in Et2O, diglyme or toluene) cooled to -40 °C was
added dropwise through a flex needle to a cooled (-60 °C)
solution of DBU (1.2 10-1 mol) diluted in the desired solvent
(200 ml) at a rate to maintain the temperature under -60 °C.
A part of the DBU-HCl salt precipitated. At the end of the
addition, the mixture was allowed to warm to -10 °C. Dry and
degassed pentane (100 mL) was added to the solution to
precipitate all the ammonium salts. The mixture was filtrated
on Celite under nitrogen and kept at low temperature (-50 °C).
P u r ifica tion of th e Eth er ea l Solu tion s of Low Boilin g
P h osp h a a lk yn es (5b-e,h ,i). When diethyl ether was used as
solvent, the impurities contained in the crude ethereal solution
of the phosphaalkynes 5b-e,h ,i (excess of DBU and residual
salts) were removing by trap-to-trap distillation in vacuo (10-1
1-Cycloh exylm eth ylid yn ep h osp h in e (5k ). Yield: 73%. 31
P
NMR (CDCl3) δ: -62 (3J PH ) 14.9 Hz). 1H NMR (CDCl3) δ: 1.12-
1.67 (m, 10H), 2.25 (m, 1H). 13C NMR (CDCl3) δ: 24.4, 25.4,
33.1, 38.8 (2J PC ) 18.9 Hz), 129.1 (3J PC ) 6.6 Hz), 180.4 (1J PC
35.5 Hz).
)
P r ep a r a tive Syn th esis of (5c). A suspension of LiAlH4 (22.8
g, 0.6 mol) in freshly distilled diethyl ether (400 mL) was cooled
to -70 °C, and AlCl3 (240 g, 1.8 mol) was added in several
portions. After warming up to -10 °C, then cooling to -80 °C,
the phosphonate 1c (157.2 g, 0.6 mol) in diethyl ether (200 mL)