11 X. X. Zhang, R. M. Izatt, J. S. Bradshaw and K. E. Krakowiak,
NMR induced chemical shift and relaxation studies
Coord. Chem. Rev., 1998, 174, 179.
1H and 13C NMR spectra for these studies were obtained on a
Varian Unity 400 spectrometer at 400 and 100 MHz, respect-
ively. The cryptand was dissolved in dimethylformamide-d7 (0.5
cm3) and placed in a 5 mm (o.d.) NMR tube. The cryptand
concentration was ca. 0.10 mol dmϪ3 in each case. To obtain the
induced chemical shift data, a stoichiometric amount of the
required metal nitrate was added directly to the tube con-
taining the cryptand solution and the mixture was shaken
until complete dissolution had ocurred. All metal nitrates
from lithium to caesium dissolved in the solution containing
1 (2.2.2), while rubidium and caesium nitrates yielded pre-
cipitates when added to the solution containing 2 (R = t-Bu)
and potassium, rubidium and caesium nitrates also produced a
precipitate on addition to the 4 (R = t-Bu) solution.
12 J.-M. Lehn, Acc. Chem. Res., 1978, 2, 49; C. Detellier, in
Comprehensive Supramolecular Chemistry, ed. J. L. Atwood, J. E. D.
Davies, D. D. MacNicol and F. Vögtle, Pergamon Press, Oxford,
1996, vol. 1, pp. 357–375.
13 T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, G. Wei and
A. N. Widmer-Cooper, J. Chem. Soc., Dalton Trans., 2001, 614
and refs. therein.
14 R. W. Alder and S. P. East, Chem. Rev., 1996, 96, 2097.
15 H.-J. Buschmann, E. Schollmeyer, R. Trueltzsch and J. Beger,
Thermochim. Acta, 1993, 213, 11; V. P. Solov’ev, N. N. Strakhova,
O. A. Raevsky, V. Ruediger and H.-J. Schneider, J. Org. Chem., 1996,
61, 5221; A. Thaler, R. Bergter, T. Ossowski, B. G. Cox and H.
Schneider, Inorg. Chim. Acta, 1999, 285, 1; H.-J. Buschmann and E.
Schollmeyer, J. Inclusion Phenom. Macrocyclic Chem., 2000, 38, 85.
16 I. M. Atkinson, L. F. Lindoy, O. A. Matthews, G. V. Meehan, A. N.
Sobolev and A. H. White, Aust. J. Chem., 1994, 47, 1155.
17 K. E. Krakowiak, J. S. Bradshaw and D. J. Zamecka-Krakowiak,
Chem. Rev., 1989, 89, 929; K. E. Krakowiak and J. S. Bradshaw,
J. Org. Chem., 1991, 56, 3723.
Crystallographic data
᎐
18 L. F. Lindoy, G. V. Meehan and N. Svenstrup, Synthesis, 1998, 1029.
19 A. V. Bordunov, N. K. Dalley, X. Kou, J. S. Bradshaw and V. N.
Pastushok, J. Heterocyclic Chem., 1996, 33, 933.
20 K. W. Chi, H.-C. Wei, T. Kottke and R. J. Lagow, J. Org. Chem.,
1996, 61, 5684.
[NaL](picrate)ؒCH2Cl2 (L = 3 (R = H)) ᎐ C H N NaO ؒ
᎐
44 48
5
13
CH2Cl2, M = 961.8. Triclinic, space group P1 (Ci1, no. 2), a =
12.299(10), b = 14.264(11), c = 15.32(2) Å, α = 63.29(8),
β = 81.12(9), γ = 77.38(6)Њ, V = 2338 Å3. Dc (Z = 2) = 1.366
g
cmϪ3. µMo = 2.2 cmϪ1; specimen (capillary): 0.30 × 0.12 × 0.43
mm (no correction). Full sphere of single counter instrument
room temperature (T ca. 295 K) data (2θmax = 44Њ, 2θ/θ
scan mode; monochromatic Mo Kα radiation λ = 0.71073
Å) = 10081 reflections, merging to 5782 (Rint = 0.066) (no
absorption correction), 1228 (I > 3σ(I )) considered ‘observed’
and used in the full-matrix least-squares refinement (isotropic
non-hydrogen thermal parameter forms, (x, y, z, Uiso)H con-
strained at estimates; CH2Cl2 modelled as disordered, con-
strained geometry). Conventional R, RW (statistical weights) on
|F| 0.13, 0.14. Xtal 3.4 program system.43
21 See, for example: U. Olsher, H. Feinberg, F. Frolow and G. Shoham,
Pure Appl. Chem., 1996, 68, 1195; F. Arnaud-Neu, Z. Asfari, B.
Souley and J. Vicens, An. Quim. Int. Ed., 1997, 93, 404; E. Makrlik
and P. Vanura, J. Radioanal. Nucl. Chem., 1997, 223, 229; A. P.
Marchang, S. Alihoxzic, A. S. McKim, K. A. Kumar, K. Mlinaric-
Majerski, T. Sumanovac and S. G. Bott, Tetrahedron Lett., 1998, 39,
1861; A. P. Marchand, A. S. McKim and K. A. Kumar, Tetrahedron,
1998, 54, 13 421; C. Hamamci, H. Hosgoren and S. Erdogan,
Talanta, 1998, 47, 229; A. P. Marchang and H.-S. Chong,
Tetrahedron, 1999, 55, 9697; G. G. Talanova, N. S. A. Elkarim,
V. S. Talanov, R. E. Hanes, H.-S. Hwang, A. R. Bartsch and R. D.
Rogers, J. Am. Chem. Soc., 1999, 121, 11 281.
22 J. D. Lamb, J. J. Christensen, S. R. Izatt, K. Bedke, M. S. Astin and
R. M. Izatt, J. Am. Chem. Soc., 1980, 102, 3399; V. V. Yakshin, V. M.
Abashkin and B. N. Laskorin, Dokl. Akad. Nauk SSSR, 1980, 252,
273; G. G. Talanova, K. B. Yatsimirskii and A. H. Ziemanis, Dokl.
Akad. Nauk SSSR, 1991, 319, 12 145; U. Olsher, M. G. Hankins,
D. Y. Kim and R. A. Bartsch, J. Am. Chem. Soc., 1993, 115, 3370.
23 H.-J. Buschmann, Inorg. Chim. Acta, 1986, 125, 31.
24 Spartan Version 4.0, Wavefunction, Inc., 18401 Von Karman Ave.,
#370 Irvine, CA 92715, USA.
CCDC reference number 164829.
tallographic data in CIF or other electronic format.
Acknowledgements
We acknowledge the support of the Australian Research
Council and thank Professor G. W. Everett and M.-A. Ahearn
for experimental assistance.
25 B. Metz, D. Moras and R. Weiss, J. Chem. Soc., Perkin Trans. 2,
1976, 423.
26 L. R. MacGillivray and J. L. Atwood, Angew. Chem., Int. Ed. Engl.,
1996, 35, 1828.
27 R. Geue, S. H. Jacobson and R. Pizer, J. Am. Chem. Soc., 1986, 108,
1150 and refs. therein.
28 F. H. Allen, Chem. Des. Automat. News, 1993, 8, 1.
29 B. Mertz, D. Moras and R. Weiss, Chem. Commun., 1971, 444.
30 D. Moras and R. Weiss, Acta Crystallogr., Sect. B, 1973, 29, 396.
31 D. Moras, B. Metz and R. Weiss, Acta Crystallogr., Sect. B, 1973,
29, 383.
References
1 L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes,
Cambridge University Press, Cambridge, 1989.
2 B. Dietrich, P. Viout and J.-M. Lehn, Macrocyclic Chemistry, VCH,
Weinheim, 1993.
3 Macrocyclic Compounds in Analytical Chemistry, ed. Yu. A. Zolotov,
Wiley, New York, 1997.
32 F. J. Tehan, B. L. Barnett and J. L. Dye, J. Am. Chem. Soc., 1979, 96,
7203.
4 G. W. Gokel, Crown Ethers and Cryptands, in Monographs in
Supramolecular Chemistry, ed. J. F. Stoddart, Royal Society of
Chemistry, Cambridge, 1992; R. M. Izatt, P. Pawlak, J. S. Bradshaw
and R. L. Bruening, Chem. Rev., 1995, 95, 2529; B. Dietrich, in
Comprehensive Supramolecular Chemistry, ed. J. L. Atwood, J. E. D.
Davies, D. D. MacNicol and F. Vögtle, Pergamon Press, Oxford,
1996, vol. 1, pp. 153–211.
5 J.-M. Lehn and J. P. Sauvage, J. Am. Chem. Soc., 1975, 97, 6700.
6 E. Kauffmann, J.-M. Lehn and J.-P. Sauvage, Helv. Chim. Acta,
1976, 59, 1099.
7 H.-J. Buschmann, Inorg. Chim. Acta, 1987, 134, 225 and refs.
therein; F. Marsicano, R. D. Hancock and A. McGowan, J. Coord.
Chem., 1992, 25, 85.
8 B. G. Cox and H. Schneider, Coordination and Transport Properties
of Macrocyclic Compounds in Solution, Elsevier, Amsterdam, 1992.
9 B. Dietrich, J.-M. Lehn and J. P. Sauvage, Chem. Commun., 1970,
1055.
33 D. Moras, B. Metz and R. Weiss, Acta Crystallogr., Sect. B, 1973, 29,
386.
34 G. Wipff and P. Kollman, Nouv. J. Chim., 1985, 9, 457.
35 P. Auffinger and G. Wipff, J. Incl. Phenom. Mol. Recognit. Chem.,
1991, 11, 71.
36 G. Wipff, J. Coord. Chem., 1992, 27, 7; L. Troxler and G. Wipff,
J. Am. Chem. Soc., 1994, 116, 1468.
37 J. Gutknecht, H. Schneider and J. Stroka, Inorg. Chem., 1978, 17,
3326; G. Anderegg, Helv. Chim. Acta, 1975, 58, 1218.
38 J. Sandstrom, Dynamic NMR Spectroscopy, Academic Press, New
York, 1982.
39 L. G. Armstrong and L. F. Lindoy, Inorg. Chem., 1975, 14, 1322.
40 J. Dale and P. O. Kristiansen, Acta Chem. Scand., 1972, 26, 1471.
41 Y. Takeda and H. Goto, Bull. Chem. Soc. Jpn., 1979, 52, 1920.
42 G. W. Gokel, Chem. Soc. Rev., 1992, 39.
43 S. R. Hall, G. S. D. King and J. M. Stewart (Editors), The Xtal
3.4 Users’ Manual, University of Western Australia, Lamb, Perth,
1995.
10 B. Dietrich, J.-M. Lehn, J. P. Sauvage and J. Blanzat, Tetrahedron,
1973, 29, 1629.
J. Chem. Soc., Dalton Trans., 2001, 2388–2397
2397