8428
J . Org. Chem. 1999, 64, 8428-8431
as key reactions for the synthesis of complex natural
products having highly functionalized carbocyclic back-
bone. These recent achievements emphasize the synthetic
challenge of ring-closing reactions by using mild reaction
conditions and reagents compatible with a large panel
of functionality.
Syn th esis of Med iu m - a n d La r ge-Size Rin gs
by In tr a m olecu la r Nitr ile Oxid e
Dim er iza tion : An Efficien t C-C
Bon d -F or m in g Rin g-Closin g Rea ction
N. Maugein, A. Wagner, and C. Mioskowski*
Herein, we report a C-C bond ring-closing reaction for
the synthesis of carbocyclic structures using dialdehydes
as starting material. The ring closures proceed via
intramolecular dimerization of nitrile oxides resulting in
the formation of furoxan moieties that can easily be
converted into 1,2-dioximes, 1,2-diketones, 1,2-diols, or
1,2-diamines.10
Laboratoire de Synthe`se Bioorganique,
Universite´ Louis Pasteur de Strasbourg,
Unite´ associe´e au CNRS, UMR 7514,
Faculte´ de Pharmacie, 74 route du Rhin,
F-67400 Illkirch Graffenstaden, France
Received J uly 12, 1999
Nitrile oxides are reactive intermediates, generated in
situ, and are generally involved in cycloaddition reactions
in the presence of various dipolarophiles. Intramolecular
nitrile oxide cycloaddition (INOC) has proved to be an
efficient method to prepare small and large functionalized
carbocycles. This reaction finds interesting synthetic
applications but suffers from a few limitations. Under
unfavored conditions, e.g., with hindered dipolarophiles
or in the absence of dipolarophiles, dimerization of nitrile
oxides into furoxan was observed predominantly.11
The formation of medium- and large-size ring systems
remains a permanent challenge for organic chemists as
they are widespread, ranging from naturally occurring
compounds to macrocyclic synthetic receptors or ligands.
The synthesis depends essentially on the intrinsic carbo-
or heterocyclic nature of their framework.1 As for het-
erocyclic structures, the ring closures are usually per-
formed by carbon-heteroatom bond formation, e.g., ester,
amide, or ether bonds. These approaches are well docu-
mented, and the procedures are optimized especially for
macrocyclic natural products.2 In contrast, for carbocyclic
molecules, particularly for highly functionalized struc-
tures, synthesis involving intramolecular carbon-carbon
bond formation is often troublesome.
While cycloaddition reactions involving nitrile oxides
and dipolarophiles were extensively studied and used in
organic synthesis, nitrile oxide dimerization reactions
leading to furoxan formation remain a reaction of poor
synthetic interests. To our knowledge, intramolecular bis-
(nitrile oxide) dimerization has been reported only once
by Marx et al. in 1977 for the preparation of a five-
membered-ring carbocycle, an intermediate for biotin
synthesis.12 Despite this early result, the potential of this
reaction was never exploited to develop a synthetically
useful method for the preparation of carbocyclic com-
pounds.
A number of reactions such as Wurtz coupling,3 alkyl-
ation of malonic esters,4 acyloin condensation,5 and
samarium diiodide-promoted reaction6 were applied to
synthesize carbocyclic skeletons. However, low yields are
often obtained for strained medium-ring systems or for
highly functionalized structures mainly for compatibility
reasons between the reagent and the functional groups
present on the molecules.
Recently, the reductive coupling of aldehydes using
low-valent titanium,7 intramolecular olefin metathesis,8
and other metal-mediated coupling reactions9 were used
In our initial study, we evaluated the importance of
the stability of the nitrile oxide intermediates on the
outcome of the intramolecular dimerization reaction. The
stability of nitrile oxides is conditioned by their substitu-
tion at the R-position. Alkyl nitrile oxides are very
reactive while vinylic, arylic, or sterically hindered R,R-
disubstituted nitrile oxides are described to be moder-
ately stable at room temperature and reactive only when
heated.13 We prepared a set of three dialdehyde precur-
* To whom correspondence should be addressed. Phone: (33) 3 88
67 68 63. Fax: (33) 3 88 67 88 91. E-mail: mioskow@aspirine.u-
strasbg.fr; wagner@bioorga.u-strasbg.fr.
(1) Breitenbach, J .; Boosfeld, J .; Vo¨gtle F. In Comprehensive Su-
pramolecular Chemistry; Lehn, J . M., Ed.; Pergamon: New York, 1996;
Vol. 2, pp 29-67. Dietrich, B.; Viout, P.; Lehn, J . M. Macrocyclic
Chemistry; VCH: Weinheim, 1993.
(2) Anastassiou, A. G. In Comprehensive Heterocyclic Chemistry;
Katrizky, A. R., Rees, C. W., Ed.; Pergamon Press: New York, 1984;
Vol. 7, pp 709-730. Hamilton, A. D. In Comprehensive Heterocyclic
Chemistry; Katrizky, A. R., Rees, C. W., Ed.; Pergamon Press: New
York, 1984; Vol. 7, pp 731-762.
(3) Vo¨gtle, F.; Brodesser, G.; Nieger, M.; Rissanen, K. Rec. Trav.
Chim. Pays-Bas 1993, 112, 325-329. Billington, D. C. In Comprehen-
sive Organic Synthesis; Trost B. M. Ed.; Pergamon Press: New York,
1991; Vol. 3, pp 413-433.
(4) Deslongchamps, P.; Lamothe, S.; Lin, H. S. Can. J . Chem. 1987,
65, 1298-1307. Merz, T.; Wirtz, H.; Vo¨gtle, F. Angew. Chem., Int. Ed.
Engl. 1986, 25, 567-569.
(5) Cram, D. J .; Gaston, L. K. J . Am. Chem. Soc. 1960, 82, 6386-
6389.
(6) Takahashi, S.; Mori, N. J . Chem. Soc., Perkin Trans. 1 1991,
2029-2032.
(7) Lenoir, D. Synthesis 1989, 883-896. McMurry, J . E. Acc. Chem.
Res. 1983, 16, 405-411.
(9) Nicolaou, K. C.; He, Y.; Roschangar, F.; King, N. P.; Vourloumis,
D.; Li, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 84-87. White, J . D.;
Tiller, T.; Ohba, Y.; Porter, W. J .; J ackson, R. W.; Wang, S.; Hansel-
mann, R. Chem. Commun. 1998, 79-80. Nicolaou, K. C.; Chu, X. J .;
Ramanjulu, J . M.; Natarajan, S.; Bra¨se, S.; Ru¨bsam, F.; Boddy, C. N.
C. Angew. Chem., Int. Ed. Engl. 1997, 36, 1539-1540.
(10) Armani, V.; Dell′Erba, C.; Marino, N.; Petrillo, G.; Tavani, C.
Tetrahedron, 1997, 53, 1751-1758. Gasco, A.; Boulton, A. J . Adv.
Heterocycl. Chem. 1981, 29, 251-339. Ackrell, J .; Alaf-ur-Rahman, M.;
Boulton, A. J .; Brown, R. C. J . Chem. Soc., Perkin Trans. 1 1972, 1587-
1594.
(11) Bianchi, G.; Gandolfi, R.; Gru¨nanger, P. In The Chemistry of
Functional Groups; Patai, S., Rappoport, Z., Eds.; J ohn Wiley & Sons
Ltd.: New York, 1983; pp 737-799. Grundmann, C. Synthesis 1970,
344-359. Huisgen, R. Proc. Chem. Soc. 1961, 357-369. Mukaiyama,
T.; Hoshino, T. J . Am. Chem. Soc. 1960, 82, 5339-5342.
(12) Marx, M.; Marli, F.; Reisdorff, J . H. Sandmeier, S.; Clark, S. J .
Am. Chem. Soc. 1977, 99, 6754
(13) Grundmann, C.; Dean, J . M. J . Org. Chem. 1965, 30, 2809-
2811. Grundmann, C.; Gru¨nanger, P. The Nitrile Oxides Springer-
Verlag: Berlin 1971. Barrow, S. J .; Easton, C. J .; Savage, G. P.;
Simpson, G. W. Tetrahedron Lett. 1997, 38, 2175-2178.
(8) Nicolaou, K. C.; Sarabia, F.; Ninkovick, S.; Ray, M.; Finlay, V.;
Boddy, C. N. C. Angew. Chem., Int. Ed. Engl. 1998, 37, 81-84.
Fu¨rstner, A.; Koch, D.; Langemann, K.; Leitner, W.; Six, C. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2466-2469. Nicolaou, K. C.; He, Y.;
Vourloumis, D.; Vallberg, H.; Roschangar, F.; Sarabia, F.; Ninkovic,
S.; Yang, Z.; Trujillo, J . I. J . Am. Chem. Soc. 1997, 119, 7960-7973.
10.1021/jo991111n CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/29/1999