A. Zega et al. / Bioorg. Med. Chem. 9 (2001) 2745–2756
2753
2H, CH2), 7.48 (d, J=8.3 Hz, 2H, Ar–H2,6), 7.61 (d,
J=8.3 Hz, 2H, Ar-H3,5), 9.32 (s, 1H, NH); FAB-MS:
MH+=373. Anal. calcd for C20H28N4O3: C, 64.49; H,
7.58; N, 15.04; found: C, 64.89; H, 7.66; N, 15.30.
(22%). Mp 148–151 ꢁC; IR (KBr) 3191, 3054, 2913,
2224, 1686 cmꢀ1; 300.15 MHz 1H NMR (DMSO-d6):
0
0
0.10–0.35 (m, 2H, Pip–H3,3 ,5,5 ), 0.47 (d, 3H, J=6.0 Hz,
0
0
0
CH3), 1.22–1.26 (m, 3H, Pip–H3,3 ,4,4 ,5,5 ), 2.30–2.45 (m,
0
0
1H, Pip–H2,2 ), 2.65–2.80 (m, 1H, Pip–H6,6 ), 3.45–3.65
0
0
tert-butyl 2-(1-azepanylcarbonyl)-2-(4-cyanobenzyl)hy-
drazinecarboxylate (4d). Yield: 1.58 g, (35%). Mp 136–
(m, 2H, Pip–H2,2 , 6,6 ), 4,38 (br d, 2H, CH2), 7.34 (d,
2H, J=8.3, Ar–H2,6), 7.64–7.80 (m, 5H, Ar–H3,5 and
Nph–H3,6,7), 8.02–8.18 (m, 3H, Nph–H4,5,8), 8.42 (s, 1H,
Nph–H1), 9.55 (s, 1H, NH) (two sets of signals); FAB-
MS: MH+=463. Anal. calcd for C25 H26 N4 O3 S: C,
64.91; H, 5.67; N, 12.11; found: C, 64.86; H, 5.58; N,
12.17.
141 ꢁC; IR (KBr) 3287, 2925, 2223, 1726, 1634 cmꢀ1
;
300.15 MHz 1H NMR (CDCl3): 1.44 (s, 9H, Boc), 1.51–
1.62 (m, 4H, Pip–H4,5), 1.65–1.78 ( m, 4H, Pip–H3,6),
3.30–3.49 (m, 4H, Pip–H2,7), 4.53 (s, 2H, CH2), 6.24 (br
s, 1H, NH), 7.51 (d, J=8.3 Hz, 2H, Ar–H2,6), 7.63 (d,
J=8.3 Hz, 2H, Ar–H3,5); FAB-MS: MH+=373. Anal.
calcd for C20H28N4O3: C, 64.49; H, 7.58; N, 15.04;
found: C, 64.79; H, 7.56; N, 15.34.
N0-(1-Azepanylcarbonyl)-N0-(4-cyanobenzyl)-2-naphtha-
lenesulfonohydrazide (5d). Yield: 0.26 g (22%). Mp 192–
194 ꢁC; IR (KBr) 3195, 2931, 2221, 1676 cmꢀ1
;
N0-(4-Cyanobenzyl)-N-(1-piperidinylcarbonyl)-2-naphtha-
lenesulfonylhydrazide (5a). HCl gas was bubbled for
45 min through a solution of tert-butyl 2-(4-cyano-
benzyl)-2-(1-piperidinylcarbonyl)hydrazinecarboxylate
4a (1.38 g, 3.86 mmol) in AcOH (15 mL) at room tem-
perature. AcOH was evaporated in vacuo to yield oily
2-(4-cyanobenzyl)-2-(1-piperidinylcarbonyl)hydrazinum
chloride (1.04 g, 3.53 mmol). To a solution of this com-
pound in CH2Cl2 (50 mL) cooled to 0 ꢁC were added
DIEA (1.23 mL, 7.06 mmol) and naphthalene-2-sulpho-
nylchloride (0.80 g, 3.53 mmol). The mixture was stirred
overnight at rt and concentrated in vacuo. The residue
was dissolved in EtOAc (100 mL) and washed with H2O
(50 mL), 1 M HCl (50 mL) and brine (50 mL). The
organic phase was dried over Na2SO4. After evapora-
tion of the solvent under reduced pressure, the product
was crystallized from diethylether as white crystals
(0.58 g, 33%). Mp 155–157 ꢁC; IR (KBr) 2940, 2233,
1801, 1630 cmꢀ1; 300.15MHz 1H NMR (DMSO-d6):
1.04–1.45 (m, 8H, Pip–H3,4,5), 2.90–3.20 (m, 4H, Pip-H2,6),
4.29 (br d, 2H, CH2), 7.16 (d, 2H, J=8.6 Hz, Ar–H2,6),
7.65–7.77 (m, 5H, Ar–H3,5 and Nph–H3,6,7), 8.05–8.17 (m,
3H, Nph–H4,5,8), 8.43 (s, 1H, Nph–H1), 9.59 (s, 1H, NH);
FAB-MS: MH+=449. Anal. calcd for C24H24N4O3S: C,
64.27; H, 5.39; N, 12.49; found: C, 63.98; H, 5.19; N, 12.49.
300.15 MHz H NMR (DMSO-d6): 0.63–1.48 (m, 8H,
Pip–H3,4,5,6), 3.18 (m, 4H, Pip–H2,7), 4.35 (br d, 2H,
CH2), 7.31 (d, J=8.3 Hz, 2H, Ar–H2,6), 7.55 (d,
J=8.3 Hz, 2H, Ar–H3,5), 7.64 (m, 1H, Nph–H7), 7.69
(m, 1H, Nph–H6), 7.77 (d, 1H, J=7.8, Nph–H3), 8.01
(d, 1H, J=7.8, Nph–H5), 8.05 (d, 1H, J=7.8, Nph–H4),
8.13 (d, 1H, J=7.8, Nph–H8), 8.45 (s, 1H, Nph–H1),
9.35 (s, 1H, NH); FAB-MS: MH+=463. Anal. calcd
for C25H26N4O3S: C, 64.91; H, 5.67; N, 12.11; found: C,
64.93; H, 5.71; N, 12.26.
1
N0-Hydroxy-4-{[2-(2-naphtylsulfonyl)-1-(1-piperidinylcar-
bonyl)hydrazino]methyl}benzenecarboximidamide
(6a).
NH2OH (0.54 g, 16.4 mmol) was added to the solution
of N0-(4-cyanobenzyl)-N-(1-piperidinylcarbonyl)-2-naph-
thalenesulfonylhydrazide 5a (3.68 g, 8.20 mmol) in
EtOH (100 mL). The mixture was heated at reflux tem-
perature overnight and evaporated under reduced pres-
sure to yield white foam 6a. Product was purified by
column chromatography on silica gel (CHCl3/MeOH,
50:1). Yield: 1.49 g (38%). Mp 194–197 ꢁC; IR (KBr)
3383, 1660, 1427, 1335 cmꢀ1; 600 MHz 1H NMR
(DMSO-d6): 1.03 (br s, 4H, Pip–H3,5), 1.24 (m, 2H,
J=5.75 Hz, Pip–H4), 2.93 (br s, 2H, Pip–H2,6), 3.06 (br
0
0
s, 2H, Pip–H2 ,6 ), 4.18 (br s, 1H, CH21), 4.38 (br s, 1H,
CH22), 5.78 (s, 2H, NH2), 7.16 (d, 2H, J=8.2 Hz, Ar–
5b, 5c and 5d were prepared by the same methods
described above for the synthesis of 5a using appro-
priate starting compounds.
H
2,6), 7.58 (d, 2H, J=8.2 Hz, Ar–H3,5), 7.68 (dd, 1H,
J=8.0, Nph–H7), 7.71 (dd, 1H, J=8.0 Hz, Nph–H6),
7.77 (d, 1H, J=8.6 Hz, Nph–H3), 8.04 (d, 1H,
J=8.0 Hz, Nph–H5), 8.09 (d, 1H, J=8.0 Hz, Nph–H4),
8.16 (d, 1H, J=8.0 Hz, Nph–H8), 8.46 (s, 1H, Nph–H1),
9.41 (s, 1H, NH), 9.61 (s, 1H, OH); FAB-MS:
MH+=482. Anal. calcd for C24H27N5O4S: C, 59.86; H,
5.65; N, 14.54; found C, 59.49; H, 5.33; N, 14.25.
N0-(4-Cyanobenzyl)-N0-[(2-methyl-1-piperidinyl)carbonyl]-2
naphthalenesulfonohydrazide (5b). Yield: 0.50 g (27%).
Mp 128–132 ꢁC; IR (KBr) 3240, 2950, 2228, 1652 cmꢀ1
;
300.15 MHz H NMR (DMSO-d6): 0.35–0.54 (m, 2H,
1
0
0
0
0
Pip–H3,3 ,5,5 ), 0.60–0.90 (m, 2H, Pip-H3,3 ,5,5 ), 1.15–1.50
0
(m, 5H, Pip–H4,4 and CH3), 2.55–2.70, 2.75–2.95, 3.34–
The following compounds were prepared by the same
methods described above for the synthesis of 6a, using
appropriate starting compounds.
0
3.36 (m,0 2H, Pip–H6,6 ), 3.65–3.80, 3.85–4.15 (m, 1H,
Pip–H2,2 ), 4.33 (br s, 2H, CH2), 7.36 (d, 2H,
J=8.3 Hz, Ar–H2,6), 7.67–7.75 (m, 5H, Ar–H3,5 and
Nph–H3,6,7), 8.02–8.16 (m, 3H, Nph–H4,5,8), 8.42 (s,
1H, Nph–H1), 9.44 (br s, 1H, NH) (two sets of signals);
FAB-MS: MH+=463. Anal. calcd for C25H26N4O3S:
C, 64.91; H, 5.67; N, 12.11; found: C, 65.17; H, 5.70;
N, 12.15.
N0 -Hydroxy-4-{[1-[(2-methyl-1-piperidinyl)carbonyl]-2-
(2-naphthylsulfonyl)hydrazino]methyl}benzenecarboximi-
damide (6b). Yield: 0.15 g (47%). Mp 174–176 ꢁC; IR
(KBr) 3369, 2936, 1647 cmꢀ1; 600 MHz 1H NMR
(DMSO-d6): 0.23 and 0.69 (br s, 3H, CH3), 0.54 and
1.01 ( br s, 1H, Pip–H5), 0.74 and 1.03 (br s, 1H, Pip–
0
H3), 1.12 and 1.14 (br s, 1H, Pip–H3 ), 1.26 and 1.31 (br
0
N0 -(4-Cyanobenzyl)-N0 -[(4-methyl-1-piperidinyl)carbo-
nyl]-2-naphthalenesulfonohydrazide (5c). Yield: 0.43 g
s, 1H, Pip–H4), 1.32 and 1.41 (br s, 1H, Pip–H5 ), 2.52