Please do not adjust margins
New Journal of Chemistry
Page 4 of 5
ARTICLE
Journal Name
1
2
3
4
5
6
7
8
9
Liang, J.; Shang, R., Synthesis and antibacterial activities of
novel pleuromutilin derivatives. Arch. Pharm. (Weinheim). 2018,
351 (9), e1800155.
organic and natural product synthesis. DCOhIe: m10..1R03e9v/.C290N1J30,231111A3
(3), 2244-2266; (d) Harmata, M., The (4+3)-cycloaddition
reaction: simple allylic cations as dienophiles. Chem. Commun.
2010, 46 (47), 8886-8903; (e) Lohse, A. G.; Hsung, R. P., (4+3)
cycloaddition reactions of nitrogen-stabilized oxyallyl cations.
Chemistry 2011, 17 (14), 3812-3822.
6. Siddiqui, N.; Ahsan, W., Triazole incorporated thiazoles as a
new class of anticonvulsants: design, synthesis and in vivo
screening. Eur. J. Med. Chem. 2010, 45 (4), 1536-1543.
7. Wandell, P.; Carlsson, A. C.; Sundquist, J.; Sundquist, K.,
Antihypertensive
drugs
and
relevant
cardiovascular 15. Feng, Y.; Tian, N.; Li, Y.; Jia, C.; Li, X.; Wang, L.; Cui,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
pharmacotherapies and the risk of incident dementia in patients
with atrial fibrillation. Int. J. Cardiol. 2018, 272, 149-154.
8. (a) Bubenyák, M.; Pálfi, M.; Takács, M.; Béni, S.; Szökő,
X., Construction of Fused Polyheterocycles through
Sequential [4 + 2] and [3 + 2] Cycloadditions. Org. Lett.
2017, 19 (7), 1658-1661.
É.;Noszál, B.; Kökösi, J., Synthesis of hybrids between the 16. Featherston, A. L.; Shugrue, C. R.; Mercado, B. Q.; Miller, S.
alkaloids rutaecarpine and luotonins A, B. Tetrahedron Lett.
2008, 49 (33), 4937-4940; (b) Wattanapiromsakul, C.; Forster,
P. I.; Waterman, P. G., Alkaloids and limonoids from
J., Phosphothreonine (pThr)-Based Multifunctional Peptide
Catalysis for Asymmetric Baeyer–Villiger Oxidations of
Cyclobutanones. ACS. Catalysis. 2018, 9 (1), 242-252.
Bouchardatia
Phytochemistry 2003, 64 (2), 609-615.
neurococca:
systematic
significance. 17. Yu, X.; Gao, L.; Jia, L.; Yamamoto, Y.; Bao, M., Synthesis of
Quinazolin-4(3 H)-ones via the Reaction of 2-Halobenzamides
9. (a) Porcellato, D.; Aspholm, M.; Skeie, S. B.; Mellegard, H.,
with Nitriles. J. Org. Chem. 2018, 83 (17), 10352-10358.
Application of a novel amplicon-based sequencing approach 18. Parua, S.; Das, S.; Sikari, R.; Sinha, S.; Paul, N. D., One-Pot
reveals the diversity of the Bacillus cereus group in stored raw
and pasteurized milk. Food Microbiol 2019, 81, 32-39; (b)
Yoshida, S.; Aoyagi, T.; Harada, S.; Matsuda, N.; Ikeda, T.;
Naganawa, H.; Hamada, M.; Takeuchi, T., Production of 2- 19. Phakhodee, W.; Wangngae, S.; Pattarawarapan, M., Approach
methyl-4(3H)-quinazolinone, an inhibitor of poly(ADP-ribose)
Cascade Synthesis of Quinazolin-4(3H)-ones via Nickel-
Catalyzed Dehydrogenative Coupling of o-Aminobenzamides
with Alcohols. J. Org. Chem. 2017, 82 (14), 7165-7175.
to the Synthesis of 2,3-Disubstituted-3H-quinazolin-4-ones
Mediated by Ph3P-I2. J. Org. Chem. 2017, 82 (15), 8058-8066.
synthetase, by bacterium. J. Antibiot. 1991, 44 (1), 111-112.
10. (a) Murata, K.; Takano, F.; Fushiya, S.; Oshima, Y., 20. Jia, F. C.; Zhou, Z. W.; Xu, C.; Wu, Y. D.; Wu, A. X.,
Enhancement of NO production in activated macrophages in
vivo by an antimalarial crude drug, Dichroa febrifuga. J. Nat.
Prod. 1998, 61 (6), 729-33; (b) Ashok Yadav, P.; Suresh, G.;
Rajendra Prasad, K.; Suri Appa Rao, M.; Suresh Babu, K.,
New phragmalin-type limonoids from Soymida febrifuga.
Tetrahedron Lett. 2012, 53 (7), 773-777.
Divergent Synthesis of Quinazolin-4(3H)-ones and
Tryptanthrins Enabled by tert-Butyl
a
Hydroperoxide/K3PO4-Promoted Oxidative Cyclization of
Isatins at Room Temperature. Org. Lett. 2016, 18 (12),
2942-2945.
21. Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y., A simple and efficient
approach to quinazolinones under mild copper-catalyzed
conditions. Angew. Chem. Int. Ed. Engl. 2009, 48 (2), 348-
351.
11. (a) Wang, Z.; Kang, D.; Jia, X.; Zhang, H.; Guo, J.; Liu, C.;
Meng, Q.; Liu, W., Analysis of alkaloids from Peganum
harmala L. sequential extracts by liquid chromatography
coupled to ion mobility spectrometry. J. Chromatogr. B. Analyt. 22. He, W.; Zhao, H.; Yao, R.; Cai, M., A highly efficient
Technol. Biomed. Life. Sci. 2018, 1096, 73-79; (b) Bahlakeh,
G.; Ramezanzadeh, B.; Dehghani, A.; Ramezanzadeh, M.,
Novel cost-effective and high-performance green inhibitor
heterogeneous copper-catalyzed cascade reaction of 2-
halobenzoic acids and amidines leading to quinazolinones.
RSC Adv. 2014, 4 (91), 50285-50294.
based on aqueous Peganum harmala seed extract for mild steel 23. (a) Liu, J.; Zou, J.; Yao, J.; Chen, G., Copper-Mediated
corrosion in HCl solution: Detailed experimental and
electronic/atomic level computational explorations. Journal of
Molecular Liquids 2019, 283, 174-195.
Tandem C(sp2)-H Amination and Annulation of Arenes with 2-
Aminopyridines: Synthesis of Pyrido-fused Quinazolinone
Derivatives. Adv. Synth. Catal. 2018, 360 (4), 659-663; (b) Hu,
F.; Cui, X.; Ban, Z.; Lu, G.; Luo, N.; Huang, G., Synthesis
of quinazolin-4(1H)-ones via amination and annulation of
amidines and benzamides. Org. Biomol. Chem. 2019, 17 (9),
2356-2360; (c) Shang, M., Sun, S.-Z., Dai, H.-X., & Yu, J.-Q.
Cu(OAc)2-Catalyzed Coupling of Aromatic C–H Bonds with
Arylboron Reagents. Org. Lett. 2014, 16(21), 5666– 5669; (d)
Ghosh, T., Maity, P., & Ranu, B. C. Cu(OAc)2 Promoted ortho
C (sp2)−H Amidation of 8-Aminoquinoline Benzamide with
Acyl Azide: Selective Formation of Aroyl or Acetyl Amide
Based on Catalyst Loading. J. Org. Chem. 2018, 83 (17),
11758-11767.
12. Horton, D. A.; Bourne, G. T.; Smythe, M. L., The
combinatorial synthesis of bicyclic privileged structures or
privileged substructures. Chem. Rev. 2003, 103 (3), 893-930.
13. Liu, J. F.; Kaselj, M.; Isome, Y.; Ye, P.; Sargent, K.;
Sprague, K.; Cherrak, D.; Wilson, C. J.; Si, Y.; Yohannes,
D.; Ng, S. C., Design and synthesis of a quinazolinone
natural product-templated library with cytotoxic activity. J.
Comb. Chem. 2006, 8 (1), 7-10.
14. (a) Battiste, M. A.; Pelphrey, P. M.; Wright, D. L., The
cycloaddition strategy for the synthesis of natural products
containing carbocyclic seven-membered rings. Chemistry 2006,
12 (13), 3438-3447; (b) Butenschon, H., Seven-membered rings
by cyclization at transition metals: [4+3], [3+2+2], [5+2].
Angew. Chem. Int. Ed. Engl. 2008, 47 (29), 5287-90; (c)
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins