590
Acknowledgements
Support for this work from the Natural Sciences and Engineering Research Council, Canada, and the
University of Regina is gratefully acknowledged. We thank Dr. K. Marat, Prairie Regional High Field
NMR, Manitoba for 500 MHz NMR experiments, and Mr. K. Thoms, University of Saskatchewan, for
elemental and HRMS analyses. We also thank Professor A. G. Schultz, Rensselaer Polythechnic Institute,
NY, for providing the 1H NMR spectrum of 15a for comparison.
References
1. For reviews, see: (a) Corey, E. J.; Guzman-Perez, A. Angew Chem., Intl. Ed. Engl. 1998, 37, 388. (b) Fuji, K. Chem. Rev.
1993, 93, 2037. (c) Martin, S. F. Tetrahedron 1980, 36, 419. For some recent approaches, see: (d) Yamashita, Y.; Odashima,
K.; Koga, K. Tetrahedron Lett. 1999, 40, 2803. (e) Winkler, J. D.; Doherty, E. M. Tetrahedron Lett. 1998, 39, 2253. (f)
Lemeiux, R. M.; Meyers, A. I. J. Am. Chem. Soc. 1998, 120, 5453. (g) Dalko, P. I.; Langlois, Y. J. Org. Chem. 1998, 63,
8107. (h) Trauner, D.; Bats, J. W.; Werner, A.; Mulzer, J. J. Org. Chem. 1998, 63, 5908.
2. (a) Wee, A. G. H.; Yu, Q. Tetrahedron 1998, 54, 13435. (b) Wee, A. G. H.; Yu, Q. J. Org. Chem. 1997, 62, 3324.
3. For enantioselective synthesis, see: Compound 1a: (a) Schultz, A. G.; Pettus, L. J. Org. Chem. 1997, 62, 6855. (b) Node,
M.; Nagasawa, H.; Fuji, K. J. Org. Chem. 1990, 55, 517. (c) Hakam, K.; Thielmann, M.; Thielmann, T.; Winterfeldt, E.
Tetrahedron 1987, 43, 2035. (d) Takano, S.; Yonaga, M.; Morimoto, M.; Ogasawara, K. J. Chem. Soc., Perkin Trans. 1
1985, 305. (e) Sapi, J.; Szabo, L.; Baitz-Gacs, E.; Kalaus, G.; Szantay, C.; Karsai-Bihatsi, E. Liebigs Ann. Chem. 1985,
1794. Compound 1b: (f) Czibula, L.; Nemes, A.; Visky, G.; Farkas, M.; Szombathelyi, Z.; Karpati, E.; Sohar, P.; Kessel, M.;
Kreidl, J. Liebigs Ann. Chem. 1993, 221.
4. Evans, D. A.; Polniaszek, R. P.; Devries, K. M.; Guinn, D. E.; Mathre, D. J. J. Am. Chem. Soc. 1991, 113, 7613.
5. (a) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141. Attempted reduction of allylated 6 with LAH
gave products that had resulted from reduction of the oxazolidinone moiety. (b) All new compounds showed satisfactory
NMR, elemental and HRMS analyses.
6. Evans, D. A.; Reiger, D. L.; Jones, T. K.; Kaldor, S. W. J. Org. Chem. 1990, 55, 6260.
7. Neises, B.; Steglich, W. Angew. Chem., Intl. Ed. Engl. 1978, 17, 522.
8. Taber, D. F.; Petty, E. H.; Raman, K. J. Am. Chem. Soc. 1985, 107, 196. For a related copper–carbenoid mediated process,
see: Ledon, H.; Linstrumelle, G.; Julia, S. Tetrahedron Lett. 1973, 25.
9. Krapcho, A. P. Synthesis 1982, 805, 893.
10. Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5507.
11. Equilibration of pure 14b under Fuji conditions3b (BF3OEt2, 35–40°C, 10 h) led to a 1:4 ratio of 15a:15b.
12. (a) Mp 285–286°C; lit.3b 263–265°C; (b) mp 110–113°C; lit.3b 107–108.5°C.
13. Griffith, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13.
1
14. H NMR data for 1a and 1b are in accord with those reported in the literature (Ref. 3). (a) mp 166–168°C; lit.3b 171–172°C;
(b) mp 145–146°C; lit.3f 145–146°C.