References
(Scheme 5b). The reaction between 1a and formaldehyde under
standard conditions led to the formation of 3a in 86% isolated
yield (Scheme 5c), indicating aldehyde might be a possible
intermediate during this cyclization reaction. This envision was
further reiforced since the cyclization process between 1a and
formaldehyde could proceed efficiently in the absence of
current (Scheme 5c).
[1] H. Schönherr, T. Cernak, Angew. Chem. Int. Ed. 52 (2013)
12256-12267.
[2] E.J. Barreiro, A.E. Kümmerle, C.A.M. Fraga, Chem. Rev. 111
(2011) 5215-5246.
[3] V.S. Kudale, J.J. Wang, Green Chem. 22 (2020) 3506-3511.
[4] R.A. Sheldon, Chem. Soc. Rev. 41 (2012) 1437-1451.
[5] G.A. Olah, Angew. Chem. Int. Ed. 44 (2005) 2636-2639.
[6] D.R. Palo, R.A. Dagle, J.D. Holladay, Chem. Rev. 107 (2007)
3992-4021.
[7] K. Natte, H. Neumann, M. Beller, R.V. Jagadeesh, Angew.
Chem. Int. Ed. 56 (2017) 6384-6394.
[8] R.H. Crabtree, Chem. Rev. 117 (2017) 9228-9246.
[9] B. Sam, B. Breit, M.J. Krische, Angew. Chem. Int. Ed. 54
(2015) 3267-3274.
[10] M. González-Lainez, M.V. Jiménez, V. Passarelli, J.J. Pérez-
Torrente, Catal. Sci. Technol. 10 (2020) 3458-3467.
[11] J. Wang, W. Qiang, S. Ye, et al., Catal. Sci. Technol. 11
(2021) 3364-3375.
[12] A. Kaithal, M. Schmitz, M. Hölscher, L. Walter,
ChemCatChem 12 (2020) 781-787.
[13] J. Wang, J. Wu, Z.N. Chen, et al., J. Catal. 389 (2020) 337-344.
[14] P. Liu, N.T. Tung, X. Xu, et al., J. Org. Chem. 86 (2021)
2621-2631.
[15] C. Meng, P. Liu, N.T. Tung, et al., J. Org. Chem. 85 (2020)
5815-5824.
[16] Y. Tsukamoto, S. Itoh, M. Kobayashi, Y. Obora, Org. Lett. 21
(2019) 3299-3303.
[17] B. Zhang, H. Gao, W. Wang, Green Chem. 22 (2020) 4433-
4437.
[18] Z. Xie, J. Lan, H. Zhu, et al., Chin. Chem. Lett. 32 (2021)
1427-1431.
[19] E.J. Horn, B.R. Rosen, P.S. Baran, ACS Cent. Sci. 2 (2016)
302-308.
[20] S. Möhle, M. Zirbes, E. Rodrigo, et al., Angew. Chem. Int. Ed.
57 (2018) 6018-6041.
[21] A. Wiebe, T. Gieshoff, S. Möhle, et al., Angew. Chem. Int. Ed.
57 (2018) 5594-5619.
[22] S. Tang, Y. Liu, A. Lei, Chem 4 (2018) 27-45.
[23] Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 118 (2018) 4485-4540.
[24] M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017)
13230-13319.
[25] Y. Zhao, W. Xia, Chem. Soc. Rev. 47 (2018) 2591-2608.
[26] J. Chen, S. Lv, S. Tian, ChemSusChem, 12 (2019) 115-132.
[27] J. Li, S. Zhang, K. Xu, Chin. Chem. Lett. (2021) DOI:
10.1016/j.cclet.2021.03.027.
Scheme 6. Plausible reaction mechanism.
Based on the above observations and previous reports, a
plausible mechanism of this electrochemical cyclization was
proposed, which was shown in Scheme 6. The proposed
mechanism was initiated by sequential oxidation of methanol to
produce formaldehyde at the anode [47]. During the oxidation
process, proton was released into the mixture, which could
catalyze the nucleophilic addition of the amine motif onto
formaldehyde and lead to the intermediate A. Then, enamine
cation B was generated via the dehydration process. The final
cyclization would afford the target product. During this process,
H2 was released on the cathode via the consumption of the proton.
In summary, an efficient electrochemical protocol for the
construction of 2,3-dihydroquinazolin-4(1H)-one skeleton has
been developed herein. Using methanol or methanol-d4 as the C1
source, anthranilamide derivatives could be cyclized at room
temperature to afford the desired (deuterated) N-heterocycles
conveniently, under homogeneous metal-based catalyst, external
oxidant and base-free conditions. This electrochemical
methodology is expected to not only complement the existing
methods towards the privileged dihydroquinazolinone skeleton,
but also provide a chance to access deuterated N-heterocycles
efficiently and economically.
[28] X.J. Meng, Y.Z. Pan, S.K. Mo, et al., Org. Chem. Front. 7
(2020) 2399-2404.
[29] Y. Wu, H. Ding, M. Zhao, et al., Green Chem. 22 (2020)
4906-4911.
[30] Q. Tian, J. Zhang, L. Xu, Y. Wei, Mol. Catal. 500 (2021)
111345.
[31] Y. He, L. Xu, J. Zhang, Y. Wei, Appl. Organomet. Chem. 34
(2020), e5316.
mmc1.pdf
Declaration of Competing Interest
[32] Z. Cao, Y. Zhu, X. Li, et al., J. Org. Chem. 85 (2020) 10167-
10174.
[33] S. Liu, L. Xu, Y. Wei, J. Org. Chem. 84 (2019) 1596-1604.
[34] G.S. Pedgaonkar, J.P. Sridevi, V.U. Jeankumar, et al., Eur. J.
Med. Chem. 86 (2014) 613-627.
The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.
[35] J. Xing, L. Yang, Y. Yang, et al., Eur. J. Med. Chem. 125
(2017) 411-422.
[36] J. Bergman, S. Bergman, J. Org. Chem. 50 (1985) 1246-1255.
[37] N. Gupta, V. Pons, R. Noël, et al., ACS Med. Chem. Lett.
5(2014) 94-97.
Acknowledgments
[38] R. Noel, N. Gupta, V. Pons, et al., J. Med. Chem. 56 (2013)
3404-3413.
[39] G.C. Senadi, V.S. Kudale, J.J. Wang, Green Chem. 21 (2019)
979-985.
The authors are thankful for the financial support from the
National Natural Science Foundation of China (No. 22061036),
the program for youth science and technology innovation leader
of Xinjiang Bingtuan (Nos. 2019CB026, CXRC201601).