862
U. Jana et al. / Tetrahedron Letters 49 (2008) 858–862
7. (a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317,
790–792; and references cited therein; (b) Bogdal, D. Molecules 1999,
4, 333–337.
scope of this reaction are currently underway in our
laboratory.
The notable advantages of this method are the opera-
tional simplicity, direct use of alcohols and inexpensive
and non-toxic FeCl3 catalyst (5 mol %) which render this
method an important alternative to previously reported
methods. Moreover, this method can also be useful for
the large scale synthesis of benzylic and allylic amide
derivatives.
8. (a) Terrasson, V.; Marque, S.; Georgy, M.; Campagne, J.-M.; Prim,
D. Adv. Synth. Catal. 2006, 348, 2063–2067; (b) Motokura, K.;
Nakagiri, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.;
Kaneda, K. Org. Lett. 2006, 8, 4617–4620; (c) Reddy, C. R.;
Madhabi, P. P.; Reddy, A. S. Tetrahedron Lett. 2007, 48, 7169–
7172; For other metal triflates, see: (d) Noji, M.; Ohno, T.; Fuji, K.;
Futaba, N.; Tajima, H.; Ishii, K. J. Org. Chem. 2003, 68, 9340–9347.
9. (a) Bolshan, Y.; Batey, R. A. Org. Lett. 2005, 7, 1481–1484; (b)
Anderson, J. L.; Mcnutt, R. W.; Xu, H.; Smith, L. E.; Bilsky, E. J.;
Davis, P.; Rice, K. C. J. Med. Chem. 1994, 37, 2125–2128; For
reviews, see: (c) Tsuji, J. Transition Metal Reagents and Catalysis;
Wiley-VCH: Weinheim, 2000; (d) Trost, B. M.; Crawley, M. L. Chem.
Rev. 2003, 103, 2921–2943.
Acknowledgements
We are pleased to acknowledge the financial support
from Jadavpur University. S.B. is also thankful to UGC,
New Delhi, India for his fellowship.
10. Direct substitution of alcohols, see: (a) Jana, U.; Biswas, S.; Maiti, S.
Tetrahedron Lett. 2007, 48, 4065–4069; (b) Jana, U.; Maiti, S.; Biswas,
S. Tetrahedron Lett. 2007, 48, 7160–7163.
11. Representative experimental procedure: To
a stirred solution of
References and notes
benzamide 1a (128 mg, 1 mmol) and benzhydrol 2a (185 mg, 1 mmol)
in dry nitromethane (3.5 mL) was added anhydrous FeCl3 (8 mg,
0.05 mmol). The resulting reaction mixture was refluxed for 1 h. The
reaction mixture was then concentrated under reduced pressure and
loaded onto a silica gel column and chromatographed with petroleum
ether/ ethyl acetate (4:1) to afford product 3a (282 mg, 0.98 mmol,
98%) as a white solid, mp 170 °C (lit.12 170 °C); 1H NMR (300 MHz,
CDCl3) d 6.46 (d, J = 7.7 Hz, 1H), 6.68 (br s, 1H), 7.26–7.55 (m,
13H), 7.83 (d, J = 7.5 Hz, 2H).
Large scale synthesis of 3a: A mixture of 1a (1.00 g, 5.43 mmol), 2a
(658 mg, 5.43 mmol) and FeCl3 (44 mg, 0.27 mmol) in nitromethane
(6 mL) was refluxed for 1.5 h. Usual work-up and purification
afforded a white solid 3a (1.51 g, 5.27 mmol, 97%). Spectral data for
new compounds are given below:
1. Lebel, H.; Huard, K. Org. Lett. 2007, 9, 639–642; and references cited
therein.
2. (a) Chen, Y.-J.; Chen, H.-H. Org. Lett. 2006, 8, 5609–5612; and
references cited therein. For reviews, see: (b) Hartwig, J. F. Angew.
Chem., Int. Ed. 1998, 37, 2406; Muci, A. R.; Buchwald, S. L. Top.
Curr. Chem. 2002, 219, 131–201; (c) Thu, H.-Y.; Yu, W.-Y.; Che,
C.-M. J. Am. Chem. Soc. 2006, 128, 9048–9049; and references cited
therein.
3. For recent examples of catalytic activation of alcohols, see: (a) Qin,
H.; Yamagiwa, N.; Matsunga, S.; Shibasaki, M. Angew. Chem., Int.
Ed. 2007, 46, 409–413; (b) Shirakawa, S.; Shu, K. Org. Lett. 2007, 9,
311–314; (c) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. 2006, 45, 2605–2609;
(d) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45,
793–796; (e) Iovel, I.; Kristin, M.; Kischel, J.; Zapf, A.; Mathias, B.
Angew. Chem., Int. Ed. 2005, 44, 3913–3917; (f) Inada, Y.; Nishibay-
ashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172–
15173.
N-(4-Chlorophenylbut-3-en-2yl)benzamide (5c): White solid, mp
;
140 °C; IR (KBr) 3302, 1636, 1526 cmÀ1 1H NMR (300 MHz,
CDCl3) d 1.45 (d, J = 3.3 Hz, 3H), 4.95–5.00 (m, 1H), 6.11 (br s, 1H),
6.25 (dd, J = 16.0, 5.3 Hz, 1H), 6.54 (d, J = 16.0 Hz, 1H), 7.26–7.32
(m, 4H), 7.43–7.54 (m, 3H), 7.80 (d, J = 7.5 Hz, 2H); 13C NMR
(75 MHz, CDCl3) d 20.8, 47.0, 127.0, 127.8, 128.7, 128.8, 128.9, 131.7,
133.4, 134.7, 135.3, 166.8; HRMS: m/z calcd for C17H16ClNONa:
308.0818; found, 308.0776.
4. (a) Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259–281; (b) Trost,
B. M. Science 1991, 254, 1471.
5. (a) Utsunomiya, M.; Miyamoto, Y.; Ipposhi, J.; Ohshima, T.;
Mashima, K. Org. Lett. 2007, 9, 3371–3374; and references cited
therein. For a review of palladium-catalyzed C–N bond formation
from alcohols, see: (b) Muzart, J. Tetrahedron 2005, 61, 4179–4212;
for a review of the palladium-catalyzed activation of allylic alcohols,
see: Tamaru, Y. Eur, J. Org. Chem 2005, 2647.
N-(1,3-Diphenylprop-2-en-1-yl)acrylamide (5g): White solid, mp
123 °C; IR (KBr) 3238, 3055, 1656, 1614, 1547; 1H NMR
(300 MHz, CDCl3) d 5.70 (d, J = 11 Hz, 1H), 5.88–5.96 (m, 2H),
6.11–6.21 (m, 1H), 6.33–6.41 (m, 2H), 6.57 (d, J = 16, 1H), 7.22–7.38
(m, 10H); 13C NMR (75 MHz, CDCl3) d 55.0, 126.7, 127.3, 127.4,
127.9, 128.7, 129.0, 130.7, 131.7, 136.5, 140.8, 164.7; MS m/z: calcd
for C18H17NONa, 286.1208; found, 286.0687.
6. Pd-catalyzed allylation of amides at high temperature, see: (a) Qu, Y.;
¨
Ishimura, Y.; Nagato, N. Nippon Kagaku Kaishi 1996, 256–259;
Chem. Abstr. 1996, 18087.
12. Maki, T.; Ishihara, K.; Yamamoto, H. Org. Lett. 2006, 7, 1431–
1434.